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Deep learning modelling of structural brain MRI in
chronic head and neck pain after mild TBI
Sivan Attiasa,b, Roni Ramon-Gonena,c, Yaara Erezb,c,d, Noam Bosake,f, Yelena Granovskye,f, Shahar Shellye,f,g,*

Abstract
Chronic headache is a common complication after mild traumatic brain injury (mTBI), which affects close to 70 million individuals
annually worldwide. This study aims to test the utility of a unique, early predictive magnetic resonance imaging (MRI)-based
classification model using structural brain MRI scans, a rarely used approach to identify high-risk individuals for post-mTBI chronic
pain. We recruited 227 patients with mTBI after a vehicle collision, between March 30, 2016 and December 30, 2019. T1-weighted
brainMRI scans from 128 patients within 72 hours postinjury were included and served as input for a pretrained 3DResNet-18 deep
learning model. All patients had initial assessments within the first 72 hours after the injury and performed follow-ups for 1 year.
Chronic pain was reported in 43% at 12 months postinjury; remaining 57% were assigned to the recovery group. The best results
were achieved for the axial plane with an average accuracy of 0.59 and an average area under the curve (AUC) of 0.56. Across the
model’s 8 folds. The highest performance across folds reached an AUC of 0.78, accuracy of 0.69, and recall of 0.83. Saliency maps
highlighted the right insula, bilateral ventromedial prefrontal cortex, and periaqueductal gray matter as key regions. Our study
provides insights at the intersection of neurology, neuroimaging, and predictivemodeling, demonstrating that early T1-weightedMRI
scansmay offer useful information for predicting chronic head and neck pain. Saliencymapsmay help identify brain regions linked to
chronic pain, representing an initial step toward targeted rehabilitation and early intervention for patients with mTBI to enhance
clinical outcomes.

Keywords: Brain MRI, Chronic pain, mTBI, Chronic headache, Classification, Deep learning, Model interpretability

1. Introduction

According to the Centers for Disease Control and Prevention
(CDC), an estimated 2.87 million people sustain a traumatic brain
injury (TBI) in the United States each year.20 Of these, 75% are
classified as mild TBIs (mTBI). The common causes of mTBI are
falls, struck by/against, motor vehicle collisions (MVC), and
assaults.9,10,58 Chronic pain is a common complication of mTBI.
Assessments indicate that chronic headache after mild traumatic
brain injury have a prevalence of 57.8% in the general population
and up to 51% among civilians.42 The most common site of pain
after mTBI is the head,21,34 with development of chronic
headaches reported by 47% of patients with mTBI, and pain in
the cervical area and shoulders reported by 28%. Studies that
investigated the transition process from acute to chronic pain
pointed at several contributing factors that may predict

headache.40 Nevertheless, the understanding of these pro-
cesses is still limited, and no specific treatment currently
exists.15,40

One critical aspect of the transition process concerns the
identification of individuals at risk for developing chronic pain
shortly after the injury. Accurate prediction can aid in early
intervention and personalized treatment plans to improve
prognosis.59 Furthermore, better understanding of the brain
regions involved in pain chronification, and the contributing
factors can assist in formulating preventive therapeutic steps.
Post-traumatic headache (PTH) attributed tomTBI is not linked to
visible brain abnormalities on routine imaging.53 However, subtle
structural and functional abnormalities, detected via research
imaging techniques, yield insights into the pathophysiology of
PTH.53 Considering the high incidence of PTH after mTBI, its
substantial impact on individuals, and the lack of specialized
treatments for PTH, continued exploration of its causes is
essential.

Data-drivenmachine learningmethods for neuroimaging are of
great potential for investigating and classifying neurological
diseases.22,45,61 Traditional approaches require domain knowl-
edge to delineate brain regions before feature extraction can be
performed,50 while deep learning methods can automatically
identify distinguishing features frommagnetic resonance imaging
(MRI) scans without prior knowledge. Magnetic resonance
imaging–based deep learning models may help clarify mecha-
nisms underlying the transition to chronic pain after mTBI, identify
high-risk patients, and pinpoint relevant brain regions. In a pre-
vious study, Siddiquee et al.50 used a deep learning based 3D
ResNet-18 model to classify different headache types using T1-
weighted 3D images. They distinguished between migraine,
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acute post-traumatic headache and persistent post-traumatic
headache, all vs healthy controls, with images acquired after the
patients had developed their conditions. The reported classifica-
tion accuracy ranged between 75% and 91.7%, sensitivity of
66.7% and 100%, and specificity of 83.3%. They further pointed
at several biomarkers identified by the classifier for persistent
post-traumatic headache, including the cerebellum, middle and
inferior temporal, and inferior and superior parietal regions.

Our study aimed to investigate the implementation of a robust
deep learning classification model based on structural MRI scans
for patients diagnosed with mTBI. The primary objective was to
predict, in the early stage after the accident (within 72 hours),
which individuals would develop chronic pain, and which would
not. A secondary goal was determining which structural MRI
areas aided the model’s classification task.

2. Materials and methods

2.1. Participants and cohort selection

The study protocol was approved by the institutional reviewboard of
Rambam Health Care Campus in accordance with the Declaration
of Helsinki (No. 0601-14). Individuals suffering from an MVC-
induced direct or indirect head and neck injury within the 24 hours
preceding visiting the emergency department were recruited and
were retrospectively included in this study. Participants provided
written informed consent before any data collection.

We identified participants diagnosed with mTBI at our Center
between March 30, 2016 and December 30, 2019. Included
participants (18-67 years old) reported head and/or neck pain
and fulfilled the criteria for mTBI. Inclusion was for participants
with Glasgow Coma Scale score $13 upon arrival with no
subsequent decline and a transient brain function alteration
reported without consciousness loss or shorter than 30 minutes.
Exclusion criteria included pregnancy, traumatic brain findings on
computed tomography (CT) if performed, other major bodily
injuries at the present accident, prior chronic head/neck pain
requiring regular treatment, head or neck injury in the past year,
illiteracy in Hebrew (the language of the consent forms), and
convulsive, neurodegenerative, and psychotic spectrum disor-
ders. To obtain a homogenous participant cohort, we included
only individuals that also fulfilled the diagnostic criteria for the 2
milder whiplash injury levels (ie, Whiplash-associated disorder
(WAD) grade 1-2).57

2.1.1. Chronic pain definition

Participants were contacted at multiple time points postinjury
(within 72 hours, 3, 6, and 12months) and asked to rate their head
and neck mean and maximal pain on a Numerical Pain Scale,
referring to the preceding 24 hours. Thosewhosemean pain rating
for both head and neck at 12 months postinjury was no more than
mild (,30) were classified as recovered, while thosewith a rating of
moderate to severe pain ($30) at the head or the neck were
classified as experiencing chronic pain. This classification aligns
with other studies.32,41,51 The rational for the combined score of
the headache and neck pain is associated with a widely reported
cooccurrence between the mTBI and whiplash and shared
mechanisms of these craniocervical disorders.2,23

2.2. Data preprocessing and acquisition

Imaging was performed using a 3T MRI scanner (MR 750, SIGNA
20; GE Medical Systems, Milwaukee, WI) with a 16-channel

head/neck/spine coil. The T1-weighted structural images were
acquired using a spoiled gradient recall sequence (repetition time
[TR]/echo time [TE] 5 8.2/3.2 ms, flip angle 5 12˚, field of view
[FOV] 5 25.6 3 25.6 cm2, 172 slices, voxel size 5 1 3 1 3
1 mm3).

The raw MRI scans were converted to the Neuroimaging
Informatics Technology Initiative (NIfTI) format using the Python
library dicom2nifti.28 We first performed spatial normalization to
the Montreal Neurological Institute 152 template (MNI-152) using
2-mm resolution. The spatial normalization aligns all scans to
a common template and is necessary when comparing different
patients. In addition, it removes nonbrain parts such as
background. The normalization was performed using the Spatial
Parametric Mapping software, spatial parametric mapping
(SPM).1 Specifically, SPM12 Standalone with MATLAB Compiler
Runtime (MCR) R2019b38 streamlined with the Python library
nipype.25 Next, we applied intensity normalization at 2 levels, the
3D image level and the dataset level. At the image level, eachMRI
image was individually normalized to the 0 to 1 range after min-
max normalization. At the dataset level, we applied Z-Score
normalization to the entire dataset, ensuring uniformity and
consistency across all images. For the deep learning model, the
axial, sagittal, and coronal planes were examined separately. For
each plane, only the 30 middle slices from the series were used,
representing approximately 35% to 50% of the brain in each
plane (slice thickness of 2 mm). This threshold was selected
based on preliminary experiments. The upper and lower slices
that usually contain less informative data were not included in the
deep learning model.16,56 For robustness, we further tested the
model using MNI-normalized images at 1-mm resolution.

2.3. Deep learning pipeline

To differentiate between patients who will develop chronic pain to
those who will not, we implemented a standard deep learning
pipeline (Fig. 1A). We used an 8-fold cross-validation approach.
Our choice of architecture was a 3D ResNet-18,12,27 a proven
and effective architecture in the field of computer vision 3D
classification tasks.4,29 The ResNet architecture is renowned for
its ability to extract features effectively within images without
encountering the common challenges associated with increasing
network depth, such as vanishing gradients and degradation
problems.27 In the realm of medical imaging, this network has
been extensively used for various purposes.60

We applied a widely accepted transfer learning approach and
used theMed3Dmodel13 previously trained onmedical images to
initialize our network weights. This enabled us to learn essential
medical image features efficiently. Med3D is an advanced 3D
convolutional neural network specifically tailored for medical
image segmentation. It consolidates data from 8 distinct medical
segmentation datasets, forming the comprehensive 3DSeg-8
dataset. This dataset encompasses MRI and CT scans of various
anatomical structures, such as the brain, heart, and pancreas.
The pretrained models in Med3D are versatile and applicable for
tasks including classification, detection, and segmentation.13 For
our work, we harnessed the parameters of models pretrained on
the 3DSeg-8 dataset to initialize our network.

Our model architecture (Fig. 1B) has 4 residual blocks
followed by an average pooling layer and a classification head
with output of size 1. We made a subtle adjustment to the
source architecture. Specifically, in the initial 3D 7 3 7 3 7
kernel, we set the stride to 1, meaning there’s no down-
sampling, and the original height and width are preserved. In
addition, we removed the max pooling layer. This decision
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stems from the fact that our model’s input size is relatively small,
consisting of spatial normalized images at dimensions of 79 3
95 3 79 for the 2-mm resolution and 157 3 198 3 156 for the
1-mm resolution. Decreasing the resolution through excessive
downsampling would have a negative effect on the model’s
performance. We used the AdamW37 optimizer for our model,
which is well-suited for complex modeling and has proven
effective in controlling overfitting and enhancing generaliza-
tion.37 This optimizer was chosen for its ability to incorporate
weight decay directly into the parameter updates, promoting
better regularization.30,37

For the classifier layers (which are learned from scratch), we set
a learning rate of 0.001. However, for the pretrained ResNet-18
layers, we adjusted the learning rate to 0.001 multiplied by
a factor of 0.1, resulting in a rate of 0.0001. We used the Binary
Cross Entropy loss function during the training of our model,
using a batch size of 6 on a GeForce GTX 1080 Ti GPU.

2.4. Model evaluation and saliency maps

We used several standard measures to evaluate the performance
of themodel. Accuracy is the ratio of instances that were correctly
predicted to the total number of instances. Precision is the
fraction of true positives among all the instances the classifier
identified as positives. Recall, also known as sensitivity or the true
positive rate, represents the ratio of true positives to all positive
cases in the sample. F1 is the harmonic mean between precision
and recall. Finally, the area under the curve (AUC) is the area
under the receiver operating characteristic curve, which plots the
true positive rate against the false positive rate at each threshold
setting.6,49

Saliency maps are a known explainable AI technique that are
created on the model’s output and are used to indicate which
image regions activated the network. Its idea relies on extracting
the derivative weights obtained through the back-propagation
process of the trained model. We created saliency maps using
a single back-propagation pass through a classification network,
after the approach used in a relevant study.55 Our implementation

for generating the saliency maps is publicly available on GitHub:
https://github.com/gr33n1/3D-MRI-Saliency-Map-Pytorch/tree/
master.

2.5. Sensitivity analysis

In addition to evaluating our primary models, we conducted
a sensitivity analysis to assess classification performance under
different conditions. This analysis included different data parti-
tions (both stratified and nonstratified), 2 methods for addressing
class imbalance, 2 ensemble models (average ensemble and
majority voting), and 3 ResNet architectures. Average ensemble:
The prediction probability was calculated as the average
probability across the 3 planes. Majority voting: The predicted
class was determined based on the majority vote, using the
average probabilities of the relevant class. For the different
ResNet architectures, we tested ResNet-10, ResNet-34, and
ResNet-50, to assess their suitability for our classification task.

To address the moderate class imbalance (40/60) in our
dataset, we implemented 2 strategies. The first strategy,
a classifier-level approach, involved assigning higher weights to
the positive class in the loss function to account for the
imbalance. The second strategy, a data-level approach, involved
applying data augmentation techniques to create synthetic
positive examples by transforming the existing data. The
augmentations applied included RandomHorizontalFlip, which
flips images horizontally with a set probability, and Gaussian
noise, which introduces random noise to images, enhancing the
diversity of the training data. Data augmentation is a widely
accepted method for handling imbalanced datasets, particularly
in deep learning.7

2.6. Baseline model on tabular data

To compare our model to a baseline for this cohort, we developed
a classification model using the available tabular data on each
patient, incorporating socio-demographic, psychological, and
clinical features to establish a benchmark. The 10 selected

Figure 1. Analysis and modeling pipeline. (A) The preprocessing steps include normalization to MNI-152 space and splitting the dataset into k-folds for cross-
validation. Each plane serves as input to a classification model, using the ResNet-18 architecture. Fine-tuning of a pretrained 3D ResNet model enhances robust
feature extraction and classification. Finally, model interpretation is conducted using saliency maps. (B) Detailed description of the ResNet-18 architecture used in
our study. Each step contributes to the refinement of the input data and the subsequent utilization of the ResNet-18 architecture for effective image classification.

Copyright © 2025 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.

Month 2025·Volume 00·Number 00 www.painjournalonline.com 3

https://github.com/gr33n1/3D-MRI-Saliency-Map-Pytorch/tree/master
https://github.com/gr33n1/3D-MRI-Saliency-Map-Pytorch/tree/master
www.painjournalonline.com


features were based on a prior study from our lab,51 which was
conducted on a larger cohort, including participants with and
without MRI scans. We used both Random Forest5 and
XGBoost11—2 state-of-the-art models commonly used for
tabular data. The results were evaluated using the same metrics
with 8-fold cross-validation, testing both the same partition used
for our deep learning model and an additional experiment with
a stratified partition. This analysis provided a benchmark to
assess the relative performance of our deep learning model.

2.7. Validation model simulation

To evaluate themodel’s ability to classify accurately and converge
with simple data input, we conducted a simulation experiment by
adding a small white rectangle to the positive samples and
training the model. While this task was intentionally simple, it was
designed to confirm whether the model could successfully learn
from the altered data and minimize loss during training.

2.8. Data availability full data access statements

The authors take full responsibility for the data, the analyses and
interpretation, and the conduct of the research; they have full
access to all the data; and have the right to publish all data.
Anonymized data not published within this article will be made
available by request from any qualified investigator.

3. Results

3.1. Patients’ demographics and clinical data

We identified 227 patients diagnosed with mTBI and within the
inclusion criteria for the study between March 30, 2016 and
December 30, 2019 at our Center. Out of the 227 recruited
participants, 56% (n 5 128) had a T1-weighted brain MRI scan
taken within 72 hours postinjury, comprising our cohort for this
study. Median age was 36 years (range: 18-67) with 55.5%males
(n5 71) and 44.5% females (n5 57). Among them, 43% (n5 55)
reported chronic pain and 57% (n 5 73) were assigned to the
acute nonchronic pain group (recovery group). Table 1 shows
patients’ characteristics.

3.2. Classification model

We created classification models for each plane separately.
Among the 3 planes, the axial plane consistently showed better

performance. The outcomes of our classification models are
summarized in Table 2. The cross-validation for the axial plane
resulted in AUC5 0.56 and accuracy5 0.59. Investigating each
fold separately, the best fold in terms of AUC and recall achieved
AUC5 0.78, accuracy5 0.69, and recall5 0.83. The results for
the 1-mm resolution images were less favorable than those at 2-
mm resolution in terms of accuracy and AUC (for the axial plane:
accuracy 5 0.56 and AUC 5 0.52).

3.3. Model evaluation, interpretation, and saliency maps

Three models were created, 1 for each plane. We assessed the
model performance by computing the averaged accuracy,
precision, recall, F-score, and AUC across all folds. After training,
we used saliency maps to explain the model outcomes.55

Specifically, we computed the saliency map to visualize which
areas themodel used to classify patients with a high probability of
developing chronic pain or not. The mean saliency maps of the
best fold were calculated for the true positives group on the
training (n 5 20) and validation (n 5 5) sets (Fig. 2), although
several central adjacent slices highlighted the same regions, we
chose to demonstrate the salient regions in slice number 78 (out
of the original 172 slices), as it provided the clearest visualization.
The primary salient region highlighted in the map is the right
insula, but other peaks include bilateral ventromedial prefrontal
cortex, and an area adjacent to the periaqueductal gray (PAG)
matter, indicating a relationship between the higher grey matter
thickness in these regions at the acute post-traumatic stage, and
pain chronification. Similar regions were highlighted in the
saliency maps of the training and validation sets.

Table 1

Demographics and clinical characteristics for the cohort.

Group 1 (chronic pain) Group 2 (recovery) Total P W

No. of patients 55 (43%) 73 (57%) 128 0.112

Age 36.9 (612.0) 36.4 (611.2) 36.6 (611.5) 0.874

Sex (female/male) 27/28 30/43 57/71 0.471

Head pain rating at baseline 48.2 (628.5) 37.5 (625.2) 42.1 (627.1) 0.035 2446.5

Neck pain rating at baseline 60.5 (625.4) 43.8 (628.0) 51.0 (628.1) 0.001 2682

Max. head or neck pain at baseline 63.7 (625.1) 51.3 (625.7) 56.6 (626.1) 0.007 2570.5

Head pain rating at 12 mo 50.5 (631.7) 2.3 (66.1) 23.0 (632.0) ,0.001 3558.5

Neck pain rating at 12 mo 48.5 (627.8) 1.95 (65.5) 21.9 (629.7) ,0.001 3700.5

Max. head or neck pain at 12 mo 63.0 (620.9) 3.4 (67.5) 29.0 (633.1) ,0.001 4015

The Wilcoxon rank sum test was calculated for numeric variables and x2 test for categorical variables. Mean (6SD) values are reported.

Table 2

Classification model results for patients who developed

chronic pain (the positive class) vs those who recovered.

Plane Accuracy Precision Recall F1 AUC

Axial (best fold) 0.69 0.56 0.83 0.67 0.78

Axial 0.59 0.5 0.36 0.39 0.56

Coronal 0.45 0.12 0.23 0.15 0.47

Sagittal 0.5 0.24 0.2 0.21 0.39

The first row shows the result of the best fold while the other rows show the average cross-validation results.

Results are for the 2-mm resolution. Scores above 0.5 are marked in bold.

AUC, area under the curve.
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3.4. Sensitivity analysis

Table 3 presents the classification performance of several
additional experiments we performed to evaluate how the model
responds under different settings. Most experiments did not
demonstrate improved results compared to the reported model.
However, in 1 experiment, where we changed the partition to 8
folds, the model achieved slightly better accuracy (0.63 vs 0.59).
The overall trends remained consistent across experiments,
supporting the reliability of the original findings.

3.5. Baseline model performance on tabular data

Table 4 summarizes the performance metrics of our baseline
classification model, developed on tabular data comprising
socio-demographic, psychological, and clinical measurements,
which serves as a comparative foundation for our cohort. This
model demonstrated an overall better performance, achieving
an average accuracy of 0.7 and an AUC of 0.78 across all 8
folds.

3.6. Validation model simulation

Adding a small white rectangle to the positive images demon-
strated that the model could easily converge on simple tasks. In
this experiment, all evaluation metrics achieved a perfect score of
1, confirming the model’s ability to learn and adapt effectively
under controlled conditions.

4. Discussion

Our study explored the use of a deep learning approach to predict
the development of post-traumatic chronic head and neck pain in
patients after mTBI based on 3D structural brain MRI scans. We
developed a comprehensive pipeline for analysis and modeling,
using MRI scans collected 72 hours postinjury, and evaluated the
ability of deep learning models to identify patients likely to
experience chronic pain 12 months after the injury. In addition,
visual maps were used to illustrate specific brain regions
potentially involved in the development of chronic pain, offering
insights into areas of interest within the brain.

The overall model performance was moderate to low, with an
accuracy of 0.59 and an AUC of 0.56. The model achieved its

best results on the axial plane, suggesting that specific
orientations may hold more predictive information relevant to
chronic head and neck pain development. One data partition
achieved markedly higher performance, with an accuracy of 0.69
and an AUC of 0.78, indicating that certain data subsets or
conditions might enhance predictive accuracy.

Our study adopted a unique approach by focusing on images
acquired shortly after the injury, a period preceding the
manifestation of chronic pain. Our principal goal was to elucidate
whether, during this early phase, it was possible to distinguish
between individuals who would subsequently develop chronic
pain and those for whom head and neck pain would resolve
naturally relying only on imaging findings. Early prediction of
chronic pain may be critical for offering tailored treatment and
rehabilitation programs for patients. We showed axial plane
sections of brain MRI outperformed the sagittal and coronal
planes in the prediction taskwith themaximumaccuracy reached
0.75, and the maximum AUC reached 0.78. We also found
a relationship between the higher grey matter thickness in the
pain-related brain structures tested at the acute post-traumatic
stage and pain chronification.

Figure 2.Mean saliency maps across participants derived from the best fold’s true positives (TP) for the training (left) and validation (right) data. The scan images
show themean of 1 slice (78 out of 172) across participants for each set (Train and Validation). The saliency maps highlight discriminative regions for distinguishing
between the chronic pain and recovery groups. The most prominent regions are concentrated around the right insular cortex (white arrow), indicating its
contribution to the classification process. Additional areas contributing to the model’s discriminative power are the bilateral ventromedial prefrontal cortex (grey
arrow) and an area adjacent to the periaqueductal gray (PAG) matter (blue arrow). Similar maps for the training and validation data showcase the robustness of the
identified discriminative regions. These findings provide insights into the neural regions crucial for distinguishing chronic pain from recovery, enhancing the
interpretability of the model’s predictions.

Table 3

Results of classification models from additional experiments.

Experiment Accuracy Precision Recall F1 AUC

Stratified partition axial (2 mm) 0.59 0.56 0.36 0.41 0.55

Stratified partition axial (1 mm) 0.53 0.44 0.25 0.29 0.5

Different partition (seed 53) 0.63 0.65 0.42 0.48 0.59

Different partition (seed 123) 0.57 0.42 0.15 0.21 0.54

Different class weights (1.5) 0.48 0.43 0.54 0.43 0.57

Augmentation 0.52 0.38 0.2 0.24 0.57

Ensemble—majority voting 0.54 0.36 0.2 0.36 0.46

Ensemble—average probability 0.55 0.46 0.31 0.41 0.48

ResNet-10 0.52 0.19 0.11 0.14 0.52

ResNet-34 0.59 0.49 0.23 0.3 0.6

ResNet-50 0.55 0.39 0.39 0.35 0.57

AUC, area under the curve. The highest performance measures are marked in bold.
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Several prior studies have highlighted a link between post-
mTBI brain changes and the chronicity of headaches, with
findings pointing in both directions. Some studies have associ-
ated inflammation-related increases in cortical thickness within
structures of the default mode network with the development of
chronic headaches.47 Others indicated that smaller structural
volume in hippocampus, accumbens, amygdala strong predic-
tors for unfavourable TBI outcomes, including chronic head-
aches.36 Moreover, the deep learning models approach have
been also used to investigate chronic pain and headache in
different populations. For example, using deep learning techni-
ques applied with models trained on brain T1W MRI data study
found a model that can predict brain age for chronic migraine
patients compared to healthy controls.43 Another study50 used
a deep learning–based 3D ResNet-18 model to classify different
headache types using T1-weighted 3D images. This study
reported 75% accuracy for a model that distinguished acute
post-traumatic headache (n 5 48) vs healthy controls (n 5 532)
and 91.7% accuracy when distinguishing persistent post-
traumatic headache (n 5 49) vs healthy controls (n 5 532). As
opposed to our study which focused on early detection, their
acute post-traumatic headache participants were enrolled
between 0 and 59 days post-mTBI, and participants with
a persistent condition enrolled at any time after the development
of persistent post-traumatic headache. In addition, the healthy
control group was taken from several data sources, including the
public IXI dataset,19 and as part of their data preprocessing, they
removed 14 brain regions from the images that were not relevant
to the study. In our study, the entire samplewas obtained from the
same machine to ensure consistency in imaging quality, reduce
variability between scans, and maintain uniformity in data
acquisition parameters.

While previous research has offered insights into alterations
within specific brain regions associated with chronic
pain,14,17,24,46,52,53 the application of deep learning models
using T1-weighted MRI scans for this specific purpose remains
relatively understudied. Importantly, our approach allows us to
comprehensively examine all pertinent brain regions without
a priori defining specific regions of interest. We used aggregated
saliency maps to identify anatomical regions that contributed to
the model classification decision. The most prominent regions
identified were the right insular cortex, bilateral ventromedial
prefrontal cortex, and the PAG. All of these were extensively
linked to acute pain representation, as well as to the descending
pain modulation system.33,39,48 Few recent studies demon-
strated that variability in functional connectivity within the default
mode network and disruptions in structural integrity in regions
such as the PAG are associated with persistent post-traumatic
symptoms, including chronic pain.18,62 Our findings suggest

that early structural changes in these areas, observable within
72 hours postinjury, may predispose individuals to chronic pain.
Such variability could stem from individual differences in injury
response or preexisting conditions, emphasizing the need for
further mechanistic studies to investigate these pathways.
Moreover, previous studies have demonstrated subclinical
structural changes involving these areas across different
populations affected with chronic pain.8,26,44,48 Our findings
highlight the possibility that primary structural alterations of
these anatomical areas early on after injury may contribute,
rather than solely result, from the chronic pain process.
Specifically, in line with previous studies focusing on predicting
chronic PTH,3,46 they imply that its development may be
associated with a preexisting reduction in top-down regulation
of pain perception. As a by-product of our approach, identifying
potentially contributing regionsmay guide future studies that will
further investigate the role these areas play in the development
of chronic pain.

Our findings indicate that the baseline model, built using
bedside parameters like the pain intensity the patient reported
(head and neck), dizziness, number of painful body areas, and
psychological questioners (Table 4), achieved better perfor-
mance than models based on MRI scan data. While these results
highlight the predictive power of traditional machine learning
models trained on several informative features, most of which
were derived from patient self-reports, it is important to
acknowledge the fundamental differences between these
approaches. Traditional machine learning models, such as
Random Forest and XGBoost, are effective for structured tabular
datasets with clearly defined features, often outperforming deep
learning approaches in these scenarios,54 whereas our primary
goal was to identify predictive indicators within MRI scans.
Magnetic resonance imaging data are highly complex and require
the use of deep learning models capable of capturing hierarchical
and spatial patterns that are otherwise inaccessible through
traditional approaches.35 Our study was constrained by a rela-
tively small dataset, necessitating the use of a pretrained model
rather than a stand-alone model, which is dedicated only for this
purpose. While transfer learning has been widely embraced in
image classification tasks, its application in the medical domain,
particularly for 3D imaging modalities like brain MRI scans,
remains an evolving field with limited pretrained models currently
accessible.31 Our data originated solely from a single site. While
including data from the same machine for both groups is critical
for the validity of the deep learning model, the use of data from
multiple sites in future studies will be important to allow
generalizability of the findings. In addition, future work may
investigate the utility of MRI scans taken not immediately after the
injury but rather after a certain period.

Table 4

Classification model performance using only tabular data from bedside parameters (excluding magnetic resonance imaging

data).

Experiment Accuracy Precision Recall F1 AUC

Random Forest—8-fold cross-validation 0.68 0.6 0.72 0.63 0.77

XGBoost—8-fold cross-validation 0.68 0.69 0.78 0.71 0.7

Random Forest—8-fold cross-validation

(stratified)

0.7 0.67 0.69 0.66 0.8

XGBoost—8-fold cross-validation (stratified) 0.68 0.71 0.78 0.74 0.73

The included variables are “education,” “number of painful body areas,” “very-early subacute neck pain,” “PCS magnification,” “dizziness,” “HADS depression,” “very-early subacute headache,” “employment status,” “PCS

total score,” and “age.” The data were divided into the same 8 folds as the MRI experiment and also a stratified partition was examined, and the table presents the model’s average performance across these folds. The highest

performance measures are marked in bold.

AUC, area under the curve; HADS, hospital anxiety and depression scale; PCS, pain catastrophizing scale.
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In summary, our study provides valuable insights at the
intersection of neurology, neuroimaging, and predictive model-
ing. While predicting chronic pain after mild traumatic brain injury
remains challenging, our findings lay the groundwork for future
research aimed at creating more accurate and sophisticated
predictive models in clinical neurology. Early and accurate
prediction after injury is crucial, as it allows for timely intervention
in patients at risk of developing chronic pain after head and neck
injuries. Our results underscore the potential of deep learning
models in forecasting long-term outcomes based on neuro-
imaging data and highlight the need for developing specialized
modeling strategies in this field.
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