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ARTICLE INFO ABSTRACT
Keywords: Selection and integration of information based on current goals is fundamental for goal-directed behavior.
Frontoparietal cortex Reward motivation has been shown to improve behavioral performance, yet the neural mechanisms that link

Functional magnetic resonance imaging
Reward

Task representation

Multivoxel pattern analysis

motivation and control processes, and in particular its effect on context-dependent information processing,
remain unclear. We used functional magnetic resonance imaging (fMRI) in 24 human volunteers (13 females) to
test whether reward motivation enhances the coding of task-relevant information across the frontoparietal
cortex, as would be predicted based on previous experimental evidence and theoretical accounts. In a cued target
detection task, participants detected whether an object from a cued visual category was present in a subsequent
display. The combination of the cue and the object visual category determined the behavioral status of the
objects. To manipulate reward motivation, half of all trials offered the possibility of a monetary reward. We
observed an increase with reward in overall univariate activity across the frontoparietal control network when
the cue and subsequent object were presented. Multivariate pattern analysis (MVPA) showed that behavioral
status information for the objects was conveyed across the network. However, in contrast to our prediction,
reward did not increase the discrimination between behavioral status conditions in the stimulus epoch of a trial
when object information was processed depending on a current context. In the high-level general-object visual
region, the lateral occipital complex, the representation of behavioral status was driven by visual differences and
was not modulated by reward. Our study provides useful evidence for the limited effects of reward motivation on
task-related neural representations and highlights the necessity to unravel the diverse forms and extent of these
effects.

et al., 2012; Mohanty et al., 2008), response inhibition (Padmala and
Pessoa, 2011), and problem solving (Shashidhara et al., 2019).
Although the accumulating evidence at the behavioral and neural
level in humans are consistent with this sharpening and prioritization
account (Braver, 2012; Chiew and Braver, 2014; Kruglanski et al., 2002;
Miller et al., 1960; Pessoa, 2009; Simon, 1967), they do not directly
address the effect of reward motivation on the coding of task-related
information and selection and integration processes. Some support for
this idea comes from single-neuron data recorded from the prefrontal
cortex of non-human primates: reward was associated with greater
spatial selectivity, enhanced activity related to working memory and
modulated task-related activity based on the type of reward (Kennerley
and Wallis, 2009; Leon and Shadlen, 1999; Watanabe, 1996). A more
direct evidence in humans was recently demonstrated by Etzel et al.
(2016). They showed that reward enhances coding of task cues across
the frontoparietal cortex and suggested that task-set efficacy increases
with reward. It remained an open question whether this facilitative

1. Introduction

A fundamental aspect of flexible goal-directed behavior is the se-
lection and integration of information depending on a current goal to
determine its relevance to behavior and lead to a decision. With growing
interest in recent years in the link between cognitive control and reward
motivation, it has been proposed that reward enhances control processes
by sharpening representation of task goals and prioritizing task-relevant
information across the frontoparietal control network and other regions
associated with cognitive control (Botvinick and Braver, 2015; Etzel
et al., 2016; Kruglanski et al., 2002; Simon, 1967). In line with this idea,
it has been shown that motivation, usually manipulated as monetary
reward, increases task performance (Padmala and Pessoa, 2010, 2011).
Neuroimaging studies linked increased activity with reward in fronto-
parietal regions across a range of tasks, including working memory
(Pochon et al., 2002; Taylor et al., 2004), selective attention (Krebs
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Abbreviations

MD multiple-demand

LOC lateral occipital complex
LDC linear discriminant contrast

Additional neuroanatomical abbreviations

pdLFC  posterior/dorsal lateral prefrontal cortex
aMFG  anterior part middle frontal gyrus
mMFG  middle part of the middle frontal gyrus
PMFG  posterior part of the middle frontal gyrus
IPS intraparietal sulcus

preSMA pre-supplementary motor area

ACC anterior cingulate cortex

Al anterior insula

FO frontal operculum

pPFs posterior fusiform region

LO lateral occipital region

effect of reward is limited to preparatory cues, or if reward also enhances
the coding of behaviorally relevant information when the cue and a
subsequent stimulus are integrated, leading to the behavioral decision.
Effects of reward during both cue and stimulus epochs of a trial are
complementary to one another, and processing during both epochs is
vital when reaching a decision. In a recent electroencephalogram (EEG)
study, Hall-McMaster et al. (Hall-McMaster et al., 2019) showed that
reward increases coding of task cues. However, these increases were
observed only for ‘switch’ trials where task rules had to be updated. In
addition, they also provided some evidence that the representation of
task-relevant features is enhanced when reward level is high. Given the
limited spatial resolution of EEG, it is unclear whether these effects of
reward are specific to the frontoparietal control network. Taken
together, these previous findings demonstrate that the effects of reward
on representation of task-related information may not be generalized
and robust but rather specific to certain cognitive demands and trial
epochs.

To further shed light on the extent of the effects of reward on neural
representations, here we focus on the attentional saliency of task-
relevant information as determined by the nature of the task. Consis-
tent with the idea that the frontoparietal network is involved in selection
and integration of task-relevant information, in previous work we
showed that top-down attentional saliency of items from different visual
categories, as determined by their likelihood of being targets, drives
representation across this network (Erez and Duncan, 2015). Thus,
rather than representation of the visual categories themselves, it was the
attentional saliency, or behavioral status of the items, as determined by
the integration of cue and stimulus input, that was the task-relevant
aspect represented across the network. In the current study, we ask
whether reward motivation enhances the representation of task-related
behavioral status across the frontoparietal network. Furthermore, pre-
vious studies have associated reward with decreased conflict in inter-
ference tasks (Krebs et al., 2013; Padmala and Pessoa, 2011; Stiirmer
et al., 2011), suggesting that any effect of reward may be particularly
important for high-conflict items, in other words, a conflict-contingent
effect. We therefore also asked whether such facilitative effect of
reward is selective for highly conflicting items. We used fMRI and
multivariate pattern analysis (MVPA) to measure representation of the
task-related behavioral status as well as visual categories in distributed
patterns of response in the human brain. Specifically, we tested whether
pattern discriminability increased with reward in the a priori chosen
frontoparietal ‘multiple-demand’ (MD) network (Duncan, 2010; Fedor-
enko et al., 2013), which has been associated with multiple aspects of
cognitive control, such as working memory, task sets, conflict
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monitoring, task switching, and task-dependent categorical decisions
(Cole et al., 2016; Erez and Duncan, 2015; Fedorenko et al., 2013; Li
et al., 2007; Muhle-Karbe et al., 2017; Nastase et al., 2017; Vergauwe
et al., 2015; Wisniewski et al., 2016). Lastly, it is commonly accepted
that top-down signals from the frontoparietal MD network to the visual
cortex play an important role in the processing of task-related infor-
mation. Therefore, we tested whether similar effects of reward would be
observed in the high-level general-object visual region, the lateral oc-
cipital complex (LOC).

2. Materials and methods
2.1. Participants

24 participants (13 females), between the ages of 18-40 years (mean
age: 25) took part in the study. Four additional participants were
excluded due to large head movements during the scan (greater than 5
mm). The sample size was determined prior to data collection as typical
for neuroimaging studies, in accordance with sample sizes in previous
fMRI studies that showed sufficient power to detect representation of
behavioral status and effects of reward on coding of task information
(Erez and Duncan, 2015; Etzel et al,, 2016), and to comply with
counter-balancing requirements of the experimental design across par-
ticipants. All participants were right-handed with normal or
corrected-to-normal vision and had no history of neurological or psy-
chiatric illness. The study was conducted with approval by the Cam-
bridge Psychology Research Ethics Committee. All participants gave
written informed consent and were monetarily reimbursed for their
time.

2.2. Task design

Participants performed a cued target detection categorization task in
the MRI scanner (Fig. 1A). On each trial, integration of a preceding cue
and the presented object determined the behavioral status of the object.
Our primary question concerned the representation during the stimulus
epoch of a trial where cue and stimulus are integrated, and we therefore
designed the task accordingly. At the beginning of each trial, one of
three visual categories (sofas, shoes, cars) was cued, determining the
target category for that trial. Participants had to indicate whether the
subsequent object matched this category or not by pressing a button. For
each participant, only two of the categories were cued as targets
throughout the experiment. Depending on the cue on a given trial, ob-
jects from these categories could be either Targets, or nontargets with
high conflict as they could serve as targets on other trials (High-conflict
nontarget). The third category was never cued, therefore objects from
this category served as Low-conflict nontargets. This design yielded
three behavioral status conditions: Targets, High-conflict nontargets and
Low-conflict nontargets (Fig. 1B). Critically, following the integration of
the cue and presented object, the relevant information that is expected
to be represented across the MD network is the behavioral status of a
given category, rather than the visual category itself (Erez and Duncan,
2015). Therefore, the task-relevant distinctions that were tested using
MVPA were pairs of categories with different behavioral status. The
assignment of the categories to be cued (and therefore serve as either
Targets or High-conflict nontargets) or not (and serve as Low-conflict
nontargets) was counter-balanced across participants.

To manipulate motivation, half of the trials were cued as reward
trials in which a monetary reward was offered. On these reward trials,
participants had the chance of earning £1 if they completed the trial
correctly and within a time limit. Four random reward trials out of 32 in
each run were assigned the £1 reward, thus ensuring an incentive on all
reward trials. To avoid longer reaction times when participants try to
maximize their reward, a response time threshold was used for reward
trials, set separately for each participant as the average of 32 trials in a
pre-scan session. The participants were told that the maximum reward
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shoe *£££%| Cue: 1s

Fixation: 500 ms + variable time

Stimulus presentation: 120 ms

Mask until response

Inter trial interval: 500 ms
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Fig. 1. Experimental paradigm. A. An example trial.
A trial began with a cue (1 s) indicating the target
category, followed by 500 ms fixation period. Reward
trials were cued with three red £ symbols next to the
target category. After an additional variable time
(0.4, 0.7, 1.0 or 1.3 s), an object was presented for
120 ms. The object was then masked (a scramble of
the all the stimuli used), until response or for a
maximum of 3 s. The participants pressed a button to
indicate whether the object was from the cued cate-
gory (Target trials) or not (Nontarget trials). 33% of
all trials were catch trials. These included cue fol-
lowed by fixation dot for 500 ms, which then turned
red for another 500 ms indicating the absence of the
stimulus, followed by the inter-trial interval. B.
Experimental conditions. For each participant, two
categories served as potential targets depending on
the cue, and a third category never served as target.
Here as an example, shoes and sofas are the cued
categories and cars as the uncued category. In the
Target trials, the presented object matched the cued
category. In the High-conflict nontarget trials, the
object did not match the cued category, but was from
the other cued category, therefore could serve as a
target on other trials. In the Low-conflict nontarget
trials, the presented object was from the category that

nontarget

High-conflict

was never cued. Overall, this design yielded three
levels of behavioral status: Targets, High-conflict
nontargets, and Low-conflict nontargets. The design
was used for both no-reward and reward conditions.

Low-conflict
nontarget

sofa

Cue: shoe

Cue: sofa

they could earn is £24 in the entire session (£4 per run) and were not told
what the time threshold was. Therefore, to maximize their gain, par-
ticipants had to treat every reward trial as a £1 trial and respond as
quickly and as accurately as possible, just as in no-reward trials.

Each trial started with a 1 s cue, which was the name of a visual
category that served as the target category for this trial. On reward trials,
the cue included three red pound signs presented next to the category
name. The cue was followed by a fixation dot in the center of the screen
presented for 0.5 s and an additional variable time of either 0.1, 0.4, 0.7
or 1 s, selected randomly, in order to make the stimulus onset time less
predictable. The stimulus was then presented for 120 ms and was fol-
lowed by a mask. The stimulus duration was fixed and identical for all
trials. Participants indicated by a button press whether this object
belonged to the cued target category (present) or not (absent). Following
response, a 1 s blank inter-trial interval separated two trials. For both
reward and no-reward trials, response time was limited to a maximum of
3 s, after which the 1 s blank inter-trial interval started even when no
response was made. For reward trials, an additional subject-specific
response time threshold was used as mentioned above to determine
whether the participants earned the reward or not, but this time
threshold did not affect the task structure and was invisible to the
participants.

We used catch trials to decorrelate the BOLD signals of the cue and
stimulus phases. 33% of all trials included cue followed by fixation dot

for 500 ms, which then turned red for another 500 ms indicating the
absence of the stimulus, followed by the inter-trial interval.

The combination of multiple factors in the task design resulted in a
cognitively demanding task that was expected to recruit MD regions.
These factors include frequent cue changes, short stimulus presentation
duration, short inter-trial interval and change of response mapping. We
also note that there are multiple aspects of information selection that are
of interest when considering the effect of reward motivation on neural
representation, one of which is how it may bias attention to reward-
associated stimuli when two or more stimuli are presented simulta-
neously and compete for attention. Here we focus on single stimulus
displays and the integration of cue and stimulus that generates the
behavioral status of the stimuli as a starting point, while attentional
competition may be address in future studies.

2.3. Stimuli

Objects were presented at the center of the screen on a grey back-
ground. The objects were 2.95° visual angle along the width and 2.98°
visual angle along the height. Four exemplars from each visual category
were used. Exemplars were chosen with similar colors, dimensions, and
orientation across the categories. All exemplars were used an equal
number of times in each condition and in each run to ensure that any
differences between the experimental conditions will not be driven by
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the variability of exemplars. To increase the task demand, based on pilot
data, we added Gaussian white noise to the stimuli. The post-stimulus
mask was generated by randomly combining pieces of the stimuli that
were used in the experiment. The mask was the same size as the stimuli
and was presented until a response was made or the response time
expired.

2.4. Structure and design

Each participant completed 6 functional runs of the task in the
scanner (mean duration + SD: 6.2 £ 0.13 min). Each run started with a
response-mapping instructions screen (e.g., left = target present, right =
target absent), displayed until the participants pressed a button to
continue. Halfway through the run, the instructions screen was pre-
sented again with the reversed response mapping. All trials required a
button response to indicate whether the target was present or absent,
and the change of response mapping ensured that conditions were not
confounded by the side of the button press. Each run included 104 trials.
Out of these, 8 were dummy trials following the response mapping in-
structions (4 after each instructions screen) and were excluded from the
analysis. Of the remaining 96 trials, one-third (32 trials) were cue-only
trials (catch trials). Of the remaining 64 trials, 32 were no-reward trials
and 32 were reward trials. Of the 32 no-reward trials, half (16) were
cued with one visual category, and half (16) with the other. For each
cued category, half of the trials (8) were Target trials, and half of the
trials (8) were nontarget trials, to ensure an equal number of target
(present) and nontarget (absent) trials. Of the nontarget trials, half (4)
were High-conflict nontargets, and half (4) were Low-conflict non-
targets. There were 4 trials per cue and reward level for the High- and
Low-conflict nontarget conditions, and 8 for the Target condition, with
the latter split into two regressors (see 2.7.2 General Linear Model
(GLM) for the Main Task section below). A similar split was used for
reward trials. The task included an overall of 96 Target trials, 48 High-
conflict nontarget trials, and 48 Low-conflict nontarget trials for each
reward level (no-reward and reward) across runs and cued categories.
An event-related design was used, and the order of the trials was ran-
domized in each run. At the end of each run, the money earned in the
reward trials and the number of correct trials (across both reward and
no-reward trials) were presented on the screen.

2.5. Functional localizers

In addition to the main task, we used two other tasks in order to
functionally localize MD regions and LOC in individual participants
using independent data. These functional localizer data were used for
subject-specific ROI definitions within anatomical constraints of ROI
templates for MD regions and LOC (Fedorenko et al., 2010; Shashidhara
et al., 2020). See 2.7.5 ROI definition and 2.7.6 Subject-specific ROIs for
more details. For consistency, this approach was used for all the uni-
variate and multivariate pattern analyses.

To localize MD regions, we used a spatial working memory task
(Fedorenko et al., 2013). This task has been previously shown to
robustly recruit the MD network similarly to other tasks across multiple
cognitive domains (Fedorenko et al., 2013). Furthermore, when used as
a localizer task in conjunction with anatomical constraints (i.e., the
same approach as we use in the current study), decoding levels in an
independent task across the MD network were similar to other MD
localizer tasks (Shashidhara et al., 2020), thus supporting its suitability
for subject-specific localization of the MD network, in particular when
addressing pattern discriminability. On each trial, participants remem-
bered 4 locations (Easy condition) or 8 locations (Hard condition) in a 3
x 4 grid. Each trial started with fixation for 500 ms. Locations on the
grid were then highlighted consecutively for 1 s (1 or 2 locations at a
time, for the Easy and Hard conditions, respectively). In a subsequent
two-alternative forced-choice display (3 s), participants had to choose
the grid with the correct highlighted locations by pressing the left or the

Neuropsychologia 160 (2021) 107981

right button. Feedback was given after every trial for 250 ms. Each trial
was 8 s long, and each block included 4 trials (32 s). There was an equal
number of correct grids on the right and left in the choice display.
Participants completed 2 functional runs of 5 min 20 s each, with 5 Easy
blocks alternated with 5 Hard blocks in each run. We used the contrast of
Hard vs. Easy blocks to localize MD regions.

As alocalizer for LOC, we used a one-back task with blocks of objects
interleaved with blocks of scrambled objects. The objects were in grey
scale and taken from a set of 61 everyday objects (e.g., camera, coffee
cup, etc.). Participants had to press a button when the same image was
presented twice in a row. Images were presented for 300 ms followed by
a 500 ms fixation. Each block included 15 images with two image rep-
etitions and was 12 s long. Participants completed two runs of this task,
with 8 object blocks, 8 scrambled object blocks, and 5 fixation blocks.
The objects vs. scrambled objects contrast was used to localize LOC.

2.6. Scanning session

The scanning session included a structural scan, 6 functional runs of
the main task, and 4 functional localizer runs — 2 for MD regions and 2
for LOC. The scanning session lasted up to 100 min, with an average 65
min of EPI time. The tasks were introduced to the participants in a pre-
scan training session. The average reaction time of 32 no-reward trials of
the main task completed in this practice session was set as the time
threshold for the reward trials to be used in the scanner session. All tasks
were written and presented using Psychtoolbox3 (Brainard, 1997) and
MatLab (The MathWorks, Inc).

2.6.1. Data acquisition

fMRI data were acquired using a Siemens 3T Prisma scanner with a
32-channel head coil. We used a multi-band imaging sequence (CMRR,
release 016a) with a multi-band factor of 3, acquiring 2 mm isotropic
voxels (Feinberg et al., 2010). Whole-brain scans were acquired. Other
acquisition parameters were: TR = 1.1 s, TE = 30 ms, 48 slices per
volume with a slice thickness of 2 mm and no gap between slices, in
plane resolution 2 x 2 mm, field of view 205 mm, flip angle 62°, and
interleaved slice acquisition order. No iPAT or in-plane acceleration
were used. T1-weighted multiecho MPRAGE (van der Kouwe et al.,
2008) high-resolution images were also acquired for all participants, in
which four different TEs were used to generate four images (voxel size 1
mm isotropic, field of view of 256 x 256 x 192 mm, TR = 2530 ms, TE
=1.64, 3.5, 5.36, and 7.22 ms). The voxelwise root mean square across
the four MPRAGE images was computed to obtain a single structural
image.

2.7. Data and statistical analysis

The primary analysis approach was multi-voxel pattern analysis
(MVPA), to assess representation of behavioral status distinctions with
and without reward. An additional ROI-based univariate analysis was
conducted to confirm the recruitment of the MD network. Preprocessing,
GLM and univariate analysis of the fMRI data were performed using
SPM12 (Wellcome Department of Imaging Neuroscience, London, En-
gland; www.fil.ion. ucl.ac.uk), and the Automatic Analysis (aa) toolbox
(Cusack et al., 2014). The analysis choices described below were
determined a priori to conducting the analyses.

We used an alpha level of 0.05 for all statistical tests. Bonferroni
correction for multiple comparisons was used when required, and the
corrected p-values and uncorrected t-values are reported. All t tests that
were used to compare two conditions were paired due to the within-
subject design. A one-tailed t-test was used when the prediction was
directional, including testing for classification accuracy above chance
level. All other t tests in which the a priori hypothesis was not directional
were two-tailed. Additionally, effect size (Cohen’s d;) was computed.
We note that using a t-test for group level inference of classification
accuracy above chance may be limited in its interpretation as true
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accuracies cannot be below chance level (Allefeld et al., 2016). We
emphasize that tests for classification accuracies above chance are re-
ported in the Results as a complementary measure while the main
research question concerns the change in decoding level with reward. A
post-hoc sensitivity power analysis was conducted for the effect of
reward modulation of decoding in MD regions, with alpha level of 0.05,
power of 0.8 and one tail (Faul et al., 2007). All analyses were conducted
using custom-made MATLAB (The Mathworks, Inc) scripts, unless
otherwise stated.

2.7.1. Pre-processing

Initial processing included motion correction and slice time correc-
tion. The structural image was coregistered to the Montreal Neurological
Institute (MNI) template, and then the mean EPI was coregistered to the
structural. The structural image was then normalized to the MNI tem-
plate via a nonlinear deformation, and the resulting transformation was
applied on the EPI volumes. Spatial smoothing of FWHM = 5 mm was
performed for the functional localizers data only.

2.7.2. General Linear Model (GLM) for the main task

We used GLM to model the main task and localizers’ data. Regressors
for the main task included 12 conditions during the stimulus epoch and 4
conditions during the cue epoch. Regressors during the stimulus epoch
were split according to reward level (no-reward, reward), cued visual
category (cue 1, cue 2), and behavioral status (Target, High-conflict
nontarget, Low-conflict nontarget). Since the combination of cued
category and the stimulus category on each trial determined the
behavioral status, the regressors for each reward level included all
possible combinations of cued and stimulus category: cuel-stimulusl
(Target), cuel-stimulus2 (High-conflict nontarget), cuel-stimulus3
(Low-conflict nontarget), cue2-stimulus 2 (Target), cue2-stimulusl
(High-conflict nontarget), cue2-stimulus2 (Low-conflict nontarget). To
ensure an equal number of target present and target absent trials, the
number of Target trials in our design was twice the number of High-
conflict and Low-conflict nontarget trials. The Target trials included
two repetitions of each combination of cue, visual category and exem-
plar, with a similar split for reward trials. These two Target repetitions
were modelled as separate Targetl and Target2 regressors in the GLM to
make sure that all the regressors were based on an equal number of trials
but were invisible to the participants. All the univariate and multivariate
analyses were carried out while keeping the two Target regressors
separate to avoid any bias of the results, and they were averaged at the
final stage of the results. Overall, the GLM included 16 regressors of
interest for the 12 stimulus conditions. Each regressor was based on data
from all correct trials in the respective condition in each run (up to 4
trials), i.e., the regressors were computed separately for each run. To
account for possible effects of reaction time (RT) on the beta estimates
because of the varying duration of the stimulus epoch, and as a conse-
quence their potential effect on decoding results, these regressors were
modelled with durations from stimulus onset to response (Woolgar et al.,
2014). This model assumes that activity in each voxel continues
throughout the phase, and as long as the participant is performing the
trial. This ensured that we capture the entire cognitive processing of
integration of stimulus and cue until a decision is reached in all trials,
but we emphasize that the actual stimulus duration was fixed for all
trials. Since this model scales the regressors based on the reaction time,
the beta estimates reflect activation per unit time and are comparable
across conditions with different durations. In addition to regressors
during the stimulus epoch, we also modelled the cue epoch. Cue re-
gressors included both task and cue-only (catch) trials and were split by
reward level and cued category, modelled with duration of 1 s. Cue
regressors were based on 16 trials per regressor per run. As one-third of
all trials were catch trials, the cue and stimulus epoch regressors were
decorrelated and separable in the GLM. All the regressors were
convolved with the canonical hemodynamic response function (HRF).
The 6 movement parameters and run means were included as covariates
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of no interest.

As one of our control analyses, we classified patterns of activity of
motor response (left vs. button presses) in motor areas. For this analysis,
we constructed a separate GLM. This GLM was similar to the above GLM
of the main task, with the only difference being the stimulus phase re-
gressors. For this model, we used two regressors (right press, left press)
for each of the two reward levels (no-reward, reward), a total of four
regressors.

2.7.3. GLM for the functional localizers

For the MD localizer, regressors included Easy and Hard blocks. For
LOC, regressors included objects and scrambled objects blocks. Each
block was modelled with its duration. The regressors were convolved
with the canonical hemodynamic response function (HRF). The 6
movement parameters and run means were included as covariates of no
interest.

2.7.4. Univariate analysis

We conducted an ROI analysis to test for the effect of reward on
overall activity for the different behavioral status conditions and cues.
We used individually defined ROIs based on subject-specific indepen-
dent functional localizer data within anatomical constraints of templates
for the MD network and for LOC as defined below (see 2.7.5 ROI defi-
nition 2.7.6 and subject-specific ROIs). Using the MarsBaR toolbox
(http://marsbar.sourceforge.net; Brett et al., 2002) for SPM 12, beta
estimates for each regressor of interest were extracted and averaged
across runs, and across voxels within each ROI, separately for each
participant and condition. For the MD network, beta estimates were also
averaged across hemispheres (see 2.7.5 ROI definition below).
Second-level analysis was done on beta estimates across participants
using repeated measures ANOVA. The data for the Target condition was
averaged across the two Targetl and Target2 regressors, separately for
the no-reward and reward conditions.

2.7.5. ROI definition

MD network template. ROIs of the MD network were defined a priori
using an independent data set (Fedorenko et al., 2013; see t-map at
http://imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem). These includ
ed the anterior, middle, and posterior parts of the middle frontal gyrus
(aMFG, mMFG, and pMFG, respectively), a posterior dorsal region of the
lateral frontal cortex (pdLFC), AI-FO, pre-SMA/ACC, and IPS, defined in
the left and right hemispheres. The visual component in this template is
widely accepted as a by-product of using largely visual tasks and is not
normally considered as part of the MD network. Therefore, it was not
included in the analysis. The MD network is highly bilateral, with similar
responses in both hemispheres (Fedorenko et al., 2013). We therefore
averaged the results across hemispheres in all the analyses.

LOC template. LOC was defined using data from a functional localizer
in an independent study with 15 participants (Lorina Naci, PhD disser-
tation, University of Cambridge). In this localizer, forward- and
backward-masked objects were presented, as well as masks alone.
Masked objects were contrasted with masks alone to identify object-
selective cortex (Malach et al., 1995). Division to the anterior part of
LOC, the posterior fusiform region (pFs) of the inferior temporal cortex,
and its posterior part, the lateral occipital region (LO) was done using a
cut-off MNI coordinate of Y = —62, as previous studies have shown
differences in processing for these two regions (Erez and Yovel, 2014;
MacEvoy and Epstein, 2011).

Motor regions template. For one of our control analyses, we used two
anatomical masks for motor regions from the FSL (FMRIB Software Li-
brary) Harvard-Oxford atlas (Desikan et al., 2006). The precentral gyrus
and the supplementary motor cortex.

2.7.6. Subject-specific ROIs
To define subject-specific ROIs, we used independent functional
localizer data for each subject within the anatomical constraints of the
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MD network and LOC templates (Fedorenko et al., 2010; Shashidhara
et al., 2020). This has allowed us to use both a template, consistent
across participants, as well as subject-specific data as derived from the
functional localizers. This approach was used for all the univariate and
multivariate pattern analyses in the MD network and the LOC. For the
multivariate analysis, using this approach also ensured controlled ROI
size for comparison between regions within the MD network and be-
tween sub-regions in LOC. For each participant, beta estimates of each
condition and run were extracted for each ROI based on the MD network
and LOC templates. For each MD ROI, we then selected the 200 voxels
with the largest t-value for the Hard vs. Easy contrast as derived from the
independent subject-specific functional localizer data. This number of
voxels was defined prior to any data analysis (Erez and Duncan, 2015;
Shashidhara et al., 2020). The 200 voxels captured 19.5% of voxels in
each MD ROI on average. For each LOC sub-region, we selected 180
voxels with the largest t-values of the object vs. scrambled contrast from
the independent subject-specific functional localizer data. The selected
voxels were used for the voxelwise patterns in the MVPA for the main
task. The number of voxels that was used for LOC was smaller than for
MD regions because of the size of the pFs and LO masks. For the analysis
that addressed decoding of visual categories and compared MD regions
with the visual regions, we used 180 voxels from all regions to keep the
ROI size the same. On average, the 180 voxels captured 17.5% of voxels
in each MD ROI and 45% of each LOC ROL. Fig. S1 shows probabilities
maps of the distribution of subject-specific ROIs across MD and LOC
ROIs.

To ensure that the decoding results are robust and do not depend on
the choice of the number of selected voxels in each ROI, we repeated the
main decoding analysis for MD regions with a range of ROI sizes (100,
150, 250 and 300 voxels).

2.7.7. ROI-based multivoxel pattern analysis (MVPA)

We used MVPA to test for the effect of reward motivation on pattern
discriminability between the task-related behavioral status pairs. Vox-
elwise patterns using the selected voxels within each template were
computed for all the task conditions in the main task. We applied our
classification procedure on all possible pairs of conditions as defined by
the GLM regressors of interest during the stimulus presentation epoch,
for the no-reward and reward conditions separately (Fig. 1B). The beta
estimates for each condition and run were used for the MVPA and were
not normalized at any point during the analysis process. For each pair of
conditions, MVPA was performed using a support vector machine clas-
sifier (LIBSVM library for MATLAB, ¢ = 1) implemented in the Decoding
Toolbox (Hebart et al., 2015). We used leave-one-run-out cross--
validation in which the classifier was trained on the data of five runs
(training set) and tested on the sixth run (test set). This was repeated 6
times, leaving a different run to test each time, and classification accu-
racies were averaged across these 6 folds. Classification accuracies were
then averaged across pairs of different cued categories, yielding
discrimination measures for three pairs of behavioral status (Targets vs.
High-conflict nontargets, Targets vs. Low-conflict nontargets, and
High-conflict vs. Low-conflict nontargets) within each reward level
(no-reward, reward). Because the number of Target trials in our design
was twice the number of High-conflict and Low-conflict nontarget trials,
each discrimination that involved a Target condition was computed
separately for the two Target regressors (Targetl and Target2) and
classification accuracies were averaged across them. We note that for
each participant, while the visual categories were balanced for Targets
and High-conflict nontargets, the visual category that was assigned as
Low-conflict nontarget did not serve as a Target or High-conflict
nontarget. Nevertheless, based on previous work, it is expected that
behavioral status will be represented across the MD network with little
or no effect of the visual category itself (Erez and Duncan, 2015).

The Target and High-conflict nontarget pairs of conditions included
cases when both conditions had an item from the same visual category as
the stimulus (following different cues), as well as cases in which items
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from two different visual categories were displayed as stimuli (following
the same cue). To test for the contribution of the visual category to the
discrimination, we split the Target vs. High-conflict nontarget pairs of
conditions into these two cases and the applied statistical tests
accordingly.

Although our main hypothesis addressed the behavioral status of the
presented stimuli, several studies showed that information related to
stimulus features is also represented across the MD network (Jackson
etal., 2017; Woolgar et al., 2015). Rather than increased representation
of the behavioral status with reward as we hypothesized, information
about the visual categories themselves could increase. We therefore also
tested for decoding of visual categories when both stimuli are Targets or
both are High-conflict nontargets, and whether this is modulated by
reward.

To ensure that our results for the main study question are robust
across different pattern analysis techniques, we tested for the modula-
tion of the representation of behavioral status by reward using a linear
discriminant contrast (LDC) (Carlin and Kriegeskorte, 2017; Nili et al.,
2014), in addition to SVM. The LDC is the cross-validated Mahalanobis
distance between two classes and provides unbiased distances. Larger
LDC indicates greater pattern dissimilarity, i.e., greater discriminability,
and 0 reflects no discriminability. The MVPA analysis as described above
was repeated with the LDC measure and using the same voxel selection
procedure. For each participant, LDC was computed for all possible pairs
of conditions and LDC values were then averaged as described above to
address each of the questions. The LDC analysis was implemented using
the Representational Similarity Analysis toolbox (Nili et al., 2014).

As one of our control analyses, we tested for classification of right vs.
left button presses in motor regions for no-reward and reward trials. This
analysis was used as a quality check for the data and the correctness of
the MVPA pipeline. We used beta estimates from a separate GLM in
which trials were modelled for right/left button press only for each of
the two reward levels. Decoding accuracies were computed for each
reward level separately and then averaged across reward levels. The
analysis was performed similarly to the MVPA described above using a
support vector machine classifier (LIBSVM library for MATLAB, ¢ = 1),
implemented in the Decoding Toolbox (Hebart et al., 2015), and using a
leave-one-run-out cross-validation. All voxels within the motor ROIs
were used.

2.7.8. Whole-brain searchlight pattern analysis

To test whether regions outside the MD network show change in
discriminability between voxelwise patterns of activity of task-related
behavioral status when reward is introduced, we conducted a whole-
brain searchlight pattern analysis (Kriegeskorte et al., 2006) using the
Decoding Toolbox (Hebart et al., 2015). This analysis enables the
identification of focal regions that carry relevant information, unlike the
ROI-based analysis, which tests for a more widely distributed repre-
sentation of information across larger ROIs. For each participant, data
was extracted from spherical ROIs with a 5 mm radius (maximum 65
voxels), centered on each voxel in the brain. These voxels were used to
perform the same MVPA analysis using SVM as described above. Thus,
for each voxel, we computed the classification accuracies for the rele-
vant behavioral status distinctions, separately for the reward and
no-reward conditions. These whole-brain maps were smoothed using a
5 mm FWHM Gaussian kernel. The t-statistic from a second level
random-effects analysis on the smoothed maps was thresholded at the
voxel level using FDR correction (p < 0.05).

2.7.9. Data and code accessibility

All raw data and code used in this study will be deposited on a
departmental repository upon publication and will be available upon
any request.
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3. Results
3.1. Behavior

Overall accuracy levels were high (mean + SD: 92.51% =+ 0.08%).
Mean and SD accuracy rates for the Target, High-conflict nontarget and
Low-conflict nontarget conditions in the no-reward trials were 91.2% +
5.8%, 89.1% =+ 8.8%, and 96.6% =+ 3.8%, respectively; and for the
reward trials they were 94.2% + 5.0%, 87.8% =+ 8.7%, 96.1% =+ 4.4%,
respectively (Fig. 2A). A two-way repeated measures ANOVA with
reward level and behavioral status as within-subject factors showed no
main effect of reward (Fy, 23 = 0.49, p = 0.49), confirming that the added
time constraint for reward trials did not lead to drop in performance.
There was a main effect of behavioral status (Fo, 23 = 29.64, p < 0.001)
and an interaction between reward level and behavioral status (Fz, 23 =
5.81, p < 0.01). Post-hoc tests with Bonferroni correction for multiple
comparisons showed larger accuracies for Low-conflict nontargets
compared to Targets and High-conflict nontargets in the no-reward trials
(Two-tailed t-test: ty3 = 5.64, p < 0.001, d, = 1.15; tz3 = 5.50, p < 0.001,
d;, = 1.12 respectively), as expected given that the Low-conflict
nontarget category was fixed throughout the experiment. In the
reward trials, performance accuracies were larger for Targets compared
to High-conflict nontargets (to3 = 4.45, p < 0.001, d, = 0.91) and Low-
conflict nontargets compared to High-conflict ones (tz3 = 5.92, p <
0.001, d, = 1.2), with only marginal difference between Targets and
Low-conflict nontargets (t23 = 2.49, p = 0.06). Accuracies for Target
trials were larger for the reward trials compared to no-reward (tz3 =
2.92, p = 0.008, d, = 0.61), indicating a possible behavioral benefit of
reward. There was no difference between reward and no-reward trials
for High-conflict and Low-conflict nontargets (t;3 < 1.1, p > 0.1, for
both).

RT of successful trials for the three behavioral status conditions,
Target, High-conflict nontarget and Low-conflict nontarget, in the no-
reward trials were 589 + 98 ms, 662 £+ 103 ms, and 626 + 107 ms,
respectively (mean + SD); RTs for these conditions in the reward trials
were 541 £+ 99 ms, 614 + 99 ms, 585 + 97 ms, respectively (mean + SD)
(Fig. 2B). A two-way repeated measures ANOVA with reward level (no-
reward, reward) and behavioral status as within-subject factors showed
a main effect of reward (F;, 23 = 40.07, p < 0.001), with reward trials
being shorter than no-reward trials, as expected from the experimental
design that required a response within a time limit to receive the reward.
An additional main effect of behavioral status (Fo, 23 = 50.97, p < 0.001)
was observed, with no interaction between reward and behavioral status
(Fo, 23 = 0.63, p = 0.54). Subsequent post-hoc tests with Bonferroni
correction for multiple comparisons showed that RTs for Target trials
were faster than High-conflict and Low-conflict nontarget trials (tp3 =
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10.03, p < 0.001, d, = 2.05; tz3 = 5.17, p < 0.001, d, = 1.06 respec-
tively), and Low-conflict nontarget trials were faster than the High-
conflict ones (t;3 = 4.96, p < 0.001, d, = 1.01), as expected from a
cued target detection task.

3.2. Activity across the MD network during the cue epoch

To address our primary research question, the analysis focused on
the stimulus epoch. However, to get a full picture of the data and for
comparability with previous studies that showed increase in cue infor-
mation, we also report the results for the cue epoch here. This analysis
focuses only on the MD network and not the LOC, since no object stimuli
were presented at this epoch of the trial.

We first tested for a univariate effect of reward during the cue phase
(averaged across the p estimates of the two cues) across the subject-
specific ROIs for all MD regions. A two-way repeated measures
ANOVA with reward (2: no-reward, reward) and ROI (7) as factors
showed a main effect of reward (F;, 23 = 20.53, p < 0.001) with
increased activity during the reward trials compared to the no-reward
trials. There was also a main effect of ROI (Fg, 133 = 11.63, p < 0.001)
and an interaction of reward and ROI (Fg, 138 = 14.74, p < 0.001). Post-
hoc tests showed that all regions except aMFG showed increased acti-
vation for reward trials compared to no-reward trials (Two tailed,
Bonferroni corrected for 7 comparisons: ty3 > 3.36, p < 0.019, d, > 0.69
for all ROIs except aMFG; a trend for aMFG: ty3 = 2.9, p = 0.057, d, =
0.59). Overall, the MD network showed a strong univariate reward effect
during the cue epoch.

We next asked whether the cues were decodable as measured using
MVPA, and whether decoding levels increased with reward as has been
previously reported (Etzel et al., 2016; Hall-McMaster et al., 2019).
Decoding between the two cues separately for the two reward levels
were computed in each of the MD ROIs. A two-way repeated measures
ANOVA with reward (2) and ROI (7) as factors showed no main effects
or interactions (F < 1.9, p > 0.08). Decoding levels averaged across all
MD ROIs were (mean + SD) 51.71% + 4.39% and 50.55% + 6.69% for
the reward and no-reward conditions, respectively. There was a
marginally significant cue decoding for reward conditions, and no sig-
nificant decoding for no-reward conditions. (One-tailed t-test, reward:
tys = 1.9, p = 0.07, d; = 0.39; no-reward: tp3 = 0.4, p = 0.7, d; = 0.07).
Overall, our results show that despite substantial increases in overall
univariate activity with reward during the cue epoch across the MD
network, the cues were not decodable in both no-reward and reward
conditions.
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Fig. 2. Behavioral results. A. Accuracy rates. Proportion of correct trials is presented for Targets (T), High-conflict nontargets (HC) and Low-conflict nontargets (LC)
for no-reward and reward trials. B. Reaction times. Error bars indicate S.E.M. Asterisks show significance levels following a two-tailed paired t-test, corrected for 3

comparisons. **p < 0.01, ***p < 0.001.
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3.3. Univariate activity in the MD network during the stimulus epoch

We started our analysis for the stimulus epoch by testing for the ef-
fect of reward motivation on the overall activity in MD regions, and
whether such effect is different for the three behavioral status condi-
tions. We used averaged  estimates for each behavioral status (Target,
High-conflict nontarget, Low-conflict nontarget) and reward level (no-
reward, reward) in each of the subject-specific MD ROIs (Fig. 3).

Average [ estimates across MD regions for both no-reward and
reward conditions across all behavioral status conditions were signifi-
cantly above 0 (Fig. 3A), confirming their recruitment during the task,
and providing an indication that it was cognitively demanding (no-
reward: 1.06 + 0.58, ty3 = 8.85, corrected p < 0.001, d, = 1.81; reward:
1.71 + 1.22, ty3 = 6.83, corrected p < 0.001, d, = 1.39; two-tailed t-test,
Bonferroni corrected for 2 comparisons). A three-way repeated mea-
sures ANOVA with reward (2), behavioral status (3) and ROI (7) as
within-subject factors showed a significant main effect of reward (Fy, 23
=8.66, p = 0.007). There was an interaction of reward level and ROI (Fg,
138 = 14.83, p < 0.001), with AI/FO, IPS, and preSMA showing reward
effect following post-hoc tests and Bonferroni correction for multiple (7)
comparisons (AL ty3 = 5.26, p < 0.001, d, = 1.07; IPS: tp3 = 3.31,p =
0.021, d, = 0.68; preSMA: t3 = 3.36, p = 0.019, d; = 0.69). The mMFG
showed a reward effect that did not survive multiple comparisons (tz3 =
2.26, uncorrected p = 0.037, corrected p = 0.26, d, = 0.46). Importantly,
there was no main effect of behavioral status (Fp, 46 = 2.25, p = 0.12)
and no interaction of reward and behavioral status (Fo, 46 = 0.52, p =
0.6). Overall, the univariate results indicated increased BOLD response
with reward across large parts of the MD network with similar levels of
activity for the three behavioral status conditions.

3.4. Effect of reward motivation on discrimination of task-related
behavioral status in the MD network

Our main question concerned the representation of task-related
behavioral status information across the MD network and its modula-
tion by reward, and we used MVPA to address that. For each participant
and subject-specific ROI, we computed the classification accuracy above
chance (50%) for the distinctions between Target vs. High-conflict
nontarget, Target vs. Low-conflict nontarget and High-conflict vs.
Low-conflict nontargets, separately for no-reward and reward condi-
tions (Fig. 4). The analysis was set to test for discrimination between
behavioral status conditions within each reward level, and whether
these discriminations are larger when reward is introduced compared to
the no-reward condition. A three-way repeated-measures ANOVA with
reward (2), behavioral distinction (3) and ROI (7) as within-subject
factors showed no main effect of ROI (Fg, 138 = 0.97, p = 0.45) or any
interaction of ROI with reward and behavioral distinction (F < 1.16,p >
0.31). Therefore, the classification accuracies were averaged across ROIs
for further analysis (Fig. 4A). First, we looked at the overall discrimi-
nation of behavioral status pairs. Averaged across the three pairs of
behavioral status, decoding accuracies were (mean + SD) 51.4% =+ 2.8%
and 51.8% =+ 3.5% for the no-reward and reward conditions, respec-
tively. Decoding levels were above chance (50%) for both the no-reward
and reward trials (one-tailed t-test against chance, corrected for 2
comparisons, no-reward: ty3 = 2.34, corrected p = 0.03, d; = 0.48;
reward: tzs = 2.5, corrected p = 0.02, d, = 0.5). The decoding levels
above chance for the individual pairs of behavioral status for the no-
reward and reward conditions are summarized in Table 1. Overall, our
results show that on average behavioral status distinctions are repre-
sented across the MD network in both no-reward and reward conditions,
with some differences between individual pairs of behavioral status.

In our critical analysis we tested for the modulatory effect of reward
on the discriminability between pairs of behavioral status. In contrast to
our prediction, a two-way repeated measures ANOVA with reward (2)
and behavioral distinction (3) as within-subject factors showed no main
effects of reward or behavioral distinction (Fy, 23 = 0.26,p = 0.6; F3 4¢ =
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1.37, p = 0.26, respectively), and no interaction of the two (Fq, 46 = 0.74,
p = 0.48). In contrast to our prediction, decoding levels across behav-
ioral status pairs were not larger for reward trials compared to no-
reward trials (one-tailed paired t-test: tz3 = 0.52, p = 0.3, d; = 0.44).
To test for the specific prediction that reward might increase discrimi-
nation for the high conflict pair of conditions that may not have been
picked up by the ANOVA, we compared decoding levels for the Target
vs. High-conflict nontarget for the no-reward and reward conditions.
Classification accuracy was not larger in the reward trials compared to
the no-reward trials for the Target vs. High-conflict nontarget distinction
(One-tailed paired t-test: tp;3 = 1.07, p = 0.15, d; = 0.22). A post-hoc
sensitivity power analysis yielded an effect size of d, = 0.52 as the
minimum detectable effect. In summary, although the average decoding
levels of behavioral status were above chance across the MD network,
we did not find increases in decodability with reward. The study had
sufficient power to detect a reward modulation with a moderate effect
size of 0.52 or more, but not a smaller one.

We conducted several control analyses to confirm the robustness of
the results across analysis choices. First, a similar pattern of results was
evident across a range of ROI sizes (100, 150, 250 and 300 voxels),
confirming that the results do not depend on the choice of ROI size. A
two-way repeated measures ANOVA with reward (2) and behavioral
distinction (3) as within-subject factors showed no main effects of
reward or behavioral distinction and no interaction of the two in any of
the ROI sizes (F < 1.5, p > 0.23). Additionally, the classification accu-
racy of Targets vs. High-conflict nontargets was not larger in reward
trials compared to no-reward trials in any of the ROI sizes (one-tailed
paired t-test: ty3 < 1.17, p > 0.13, d; < 0.24).

Second, to demonstrate that the results do not depend on our choice
to use subject-specific ROIs, we repeated the analysis using the entire
MD network template. Overall, the results were similar to those obtained
using the subject-specific ROIs. Averaged across all MD ROIs, discrimi-
nation of behavioral status was significantly above chance for both no-
reward and reward trials (no-reward: 51.6% =+ 2.9%, ty3 = 2.65, cor-
rected p = 0.014, d, = 0.54; reward 52.22% =+ 4%, tp3 = 2.73, corrected
p = 0.012, d, = 0.56; one-tailed t-test against chance, Bonferroni cor-
rected for 2 comparisons). A two-way repeated measures ANOVA with
reward (2) and behavioral distinction (3) as within-subject factors
showed no effect of reward or behavioral distinction (F;, 23 = 0.44,p =
0.51; Fo, 46 = 2.22, p = 0.12, respectively), and no interaction of the two
(Fa, 46 = 1.21, p = 0.31). A specific comparison of classification accuracy
for the Target vs. High-conflict nontarget distinction showed that
decoding was not larger in the reward trials compared to the no-reward
trials (One-tailed paired t-test: to3 = 1, p = 0.16, d, = 0.21).

Third, we used another multivariate discriminability measure, linear
discriminant contrast (LDC), to assess the difference in dissimilarity of
distributed patterns of activity of the behavioral status pairs with and
without reward. A larger LDC value for a pair of conditions indicates
greater pattern dissimilarity between them, i.e., greater discriminabil-
ity, with zero indicating no discriminability. Overall, the LDC results
were highly similar to decoding results. Behavioral status pairs were
significantly discriminable across the MD network in the reward con-
dition and marginally significant after correction in the no-reward
condition (averaged across MD ROIs and the three behavioral status
pairs, one-tailed t-test against zero, corrected for 2 comparisons, no-
reward: tz3 = 1.92, corrected p = 0.068, d, = 0.39; reward: tp3 = 3.09,
corrected p = 0.005, d; = 0.63). The discriminability above chance as
obtained with LDC (i.e., above zero) for the individual pairs of behav-
ioral status for the no-reward and reward conditions were again highly
consistent with the decoding results. Discriminability above chance
when uncorrected for multiple comparisons was significantly above
chance for Targets vs. High-conflict nontargets and Targets vs. Low-
conflict nontargets, for both no-reward and reward conditions (one-
tailed t-test: tp3 > 1.91, p < 0.035), but not for High-vs. Low-conflict
nontargets (one-tailed t-test: tz3 < 1.5, p > 0.075). Discriminations be-
tween Targets vs. High-conflict nontargets in the reward condition, and
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Fig. 3. Univariate activity across the MD network during the stimulus epoch. A. Univariate results averaged across the subject-specific ROIs for all MD regions.
Results are averaged across the behavioral status conditions for no-reward (blue bar) and reward (red bar) conditions. B. Average univariate activity across the MD
network is shown separately for each behavioral status condition for no-reward (blue bars) and reward (red bars) conditions. T: Target, HC: High-conflict nontarget,
LC: Low-conflict nontarget). C. Univariate results for the individual MD regions. Post-hoc tests showed that activity increased with reward in the AI/FO, IPS and
preSMA, as well as an increase in mMFG that did not survive correction for multiple comparisons. The MD network template is shown for reference. pdLFC: posterior/
dorsal lateral prefrontal cortex, IPS: intraparietal sulcus, preSMA: pre-supplementary motor area, ACC: anterior cingulate cortex, Al: anterior insula, FO: frontal
operculum, aMFG, mMFG, pMFG: anterior, middle and posterior middle frontal gyrus, respectively. Error bars indicate S.E.M.
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Fig. 4. Reward does not modulate distinctions of behavioral status across the MD network. A. Classification accuracy is presented as percentage above chance (50%),
averaged across all MD regions and behavioral status pairs, for no-reward (blue bars) and reward (red bars) trials. Behavioral status was decodable but not modulated
by reward. Asterisks above bars show significant decoding above chance (One-tailed, Bonferroni corrected for 2 comparisons). B. The data in A is shown separately
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nontarget, LC: Low-conflict nontarget. Asterisks above bars show one-tailed significant discrimination between behavioral categories above chance without
correction (black), and Bonferroni corrected for multiple (6) comparisons (red). See Table 1 for details. C. Decoding results are shown for the individual MD regions.
The MD network template is shown for reference. pdLFC: posterior/dorsal lateral prefrontal cortex, IPS: intraparietal sulcus, preSMA: pre-supplementary motor area,
ACC: anterior cingulate cortex, Al: anterior insula, FO: frontal operculum, aMFG, mMFG, pMFG: anterior, middle and posterior middle frontal gyrus, respectively.
Error bars indicate S.E.M. + p < 0.06, *p < 0.05, **p < 0.01.
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Table 1
Decoding accuracies for pairs of behavioral status across the MD network.

Neuropsychologia 160 (2021) 107981

Distinction Reward level Mean + S.E.M (%) to3 value Uncorrected p corrected p Effect size
Target vs. High-conflict nontarget No-reward 50.9 + 0.6 1.43 0.083 0.5 0.29
Reward 52+ 0.8 2.56 **0.009 + 0.053 0.52
Target vs. Low-conflict nontarget No-reward 52.4 + 0.7 3.24 ** 0,002 *0.011 0.66
Reward 52.1 +£0.9 2.23 *0.02 0.11 0.45
High-conflict vs. Low-conflict nontargets No-reward 50.9 + 0.9 1.32 0.2 1 0.20
Reward 51.4 +£1.1 0.96 0.1 0.6 0.27

t values are for a one-tailed t-test against chance level (50%). Corrected p values were obtained using Bonferroni correction for 6 comparisons. + p < 0.06, *p < 0.05,

**p < 0.01.

Targets vs. Low-conflict nontargets in the no-reward condition survived
Bonferroni correction for 6 comparisons (corrected p < 0.016; for the
other comparisons: corrected p > 0.1).

To test for the effect of reward on pattern discriminability of
behavioral status as measured with LDC, we used a two-way repeated
measures ANOVA with reward (2) and behavioral distinction (3) as
within-subject factors. There were no effects of reward or behavioral
distinction (Fy, 23 = 1.03, p = 0.32; F5, 4¢ = 0.96, p = 0.39, respectively),
and no interaction of the two (Fa, 46 = 1.36, p = 0.27), demonstrating
that discriminability was not different between the reward and the no-
reward conditions. A further specific comparison of discriminability
between Targets and High-conflict nontargets showed a trend of larger
pattern dissimilarity for the reward compared to the no-reward condi-
tion (one-tailed paired t-test: tz3 = 1.59, p = 0.06, d, = 0.33).

Fourth, we conducted a complementary whole-brain searchlight
analysis to test for increased discriminability of behavioral status with
reward across the brain. In a second-level random-effects analysis of
behavioral status classification maps (average across the three pairs of
behavioral status) of reward vs. no-reward conditions, none of the voxels
survived an FDR threshold of p < 0.05. A separate searchlight analysis
for classification of Targets vs. High-conflict nontargets showed similar
results, with no voxels surviving FDR correction (p < 0.05). Therefore,
this analysis did not reveal any other brain regions that showed increase
in discriminability with reward.

Fifth, to ensure that our results do not depend on accounting for RT
in the GLM regressors, we repeated the analysis using regressors for the
stimulus phase with fixed duration (delta function). All the other GLM
regressors remained as before. A two-way repeated measures ANOVA
with reward (2) and behavioral distinction (3) as within-subject factors
showed no main effects of reward or behavioral distinction (Fy, 23 =
0.04, p = 0.84; F5, 46 = 0.85, p = 0.44, respectively), and no interaction
of the two (Fy, 46 = 0.68, p = 0.51). There was no increase in classifi-
cation accuracy in the specific comparison of the Target vs. High-conflict
nontarget distinction in reward trials compared to the no-reward trials
(One-tailed paired t-test: tp3 =0.6, p = 0.28, d, = 0.12).

Lastly, as a quality check for the data and analysis pipeline, we
classified right vs. button presses in two motor regions, the precentral
gyrus and the supplementary motor cortex. Decoding accuracies aver-
aged across no-reward and reward conditions were high and signifi-
cantly above chance (50%) in both regions, as would be expected, thus
providing support for the good quality of the data and the analysis
procedure. (precentral gyrus: 75.35% =+ 9.65%, ty3 = 12.88, corrected p
= 0.001, d, = 2.63; supplementary motor cortex: 81.6% + 12.88%, to3
=12.02, corrected p = 0.001, d, = 2.45; one-tailed t-test against chance,
Bonferroni corrected for 2 comparisons).

3.5. Effects of reward motivation on task-related behavioral status in LOC

It is widely accepted that the frontoparietal MD network exerts top-
down control on visual areas, contributing to task-dependent processing
of information. As a comparison to the MD network, we performed
similar univariate and multivariate analyses during the stimulus epoch
in the high-level general-object visual region, the lateral occipital
complex (LOC), separately for its two sub-regions, LO and pFs. We report
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decoding in subject-specific ROIs driven by the visual categories them-
selves, as would be expected in LOC, in the following sections.

We first conducted univariate analysis to test for an effect of reward
and behavioral status on overall activity in LOC. A four-way repeated-
measures ANOVA with reward (2), behavioral status (3), ROI (2), and
hemisphere (2) as within-subject factors showed no main effect of
reward (Fy, 23 = 2,15 p = 0.16), a main effect of ROI (F, 53 =14.70p <
0.001), and a main effect of hemisphere (Fi, 23 = 14.97, p < 0.001).
There was an interaction of reward and ROI (F;, 3 = 12.5, p = 0.002),
and post-hoc tests with correction for multiple (2) comparisons showed
that activity was larger for reward compared to no-reward trials in LO
(Two-tailed t-test: tz3 = 2.55, p = 0.036, d, = 0.52), but not in pFs (Two-
tailed t-test: tp3 = 0.028, p > 0.9, d, = 0.006). There was a main effect of
behavioral status (Fo, 46 = 6.92, p = 0.002), but importantly there was no
interaction of behavioral status and reward (Fa, 46 = 0.73, p = 0.50).
Altogether, the univariate results show that reward effects in LOC were
partial and limited to LO.

We then tested for the representation of the behavioral status con-
ditions in LOC (Fig. 5). Decoding levels averaged across all pairs of
behavioral status and the two LOC ROIs were above chance for both no-
reward and reward conditions (mean + SD: 53.23% + 3.64% and
53.76% =+ 4.14% for the no-reward and reward conditions, respectively.
One-tailed t-test against chance, corrected for 2 comparisons, no-
reward: tp3 = 4.34, corrected p < 0.001, d, = 0.9; reward: ty3 = 4.45,
corrected p < 0.001, d; = 0.9). Importantly, decoding levels were not
larger for the reward conditions compared to the no-reward conditions
for any of the behavioral status distinctions, with similar results for both
LO and pFs. A four-way repeated-measures ANOVA with reward (2),
behavioral distinction (3), ROIs (2) and hemispheres (2) as within-
subject factors showed no main effect of reward (F;, 23 = 0.34, p =
0.56) or interaction of reward and ROI (F, 23 = 1.14, p = 0.29). No other
main effects or interactions were significant (F < 3.15, p > 0.05).
Overall, these results demonstrate that reward did not modulate the
coding of the task-related behavioral status distinctions in LOC.

3.6. Conflict-contingent vs. visual category effects

An important aspect of the Target and High-conflict nontarget con-
ditions in this experiment was that they both contained the same visual
categories, which could be either a target or a nontarget (Fig. 1B).
Therefore, the Target vs. High-conflict nontarget pairs of conditions in
our decoding analysis included cases where the stimuli in the two con-
ditions were items from different visual categories (e.g. shoe and sofa
following a ‘shoe’ cue), as well as cases where the two stimuli were items
from the same visual category (e.g. shoe following a ‘shoe’ cue and a
‘sofa’ cue). We further investigated whether the representation in the
MD network and in the LOC was driven by the task-related high conflict
nature of the two conditions or by the different visual categories of the
stimuli, and whether there was a facilitative effect of reward which is
limited to the representation of the visual categories. Fig. 6A shows
Target vs. High-conflict nontarget distinctions for no-reward and reward
conditions, presented separately for pairs of conditions in which the
stimuli belonged to the same visual category (different cue trials), and
for pairs in which the stimuli belonged to different visual categories
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Fig. 5. Reward motivation does not increase coding
of behavioral status in LOC. A. Classification accuracy
averaged across all behavioral status pairs is pre-
sented as percentage above chance (50%), averaged
across LO and pFS and both hemispheres. Classifica-
tion accuracies for no-reward (blue bars) and reward
(red bars) conditions are similar and above chance.
Asterisks above bars show significant decoding level
above chance, (one-tailed Bonferroni corrected for 2
comparisons). B. Classification accuracies are similar
for all three behavioral status distinctions. T: Target,
HC: High-conflict nontarget, LC: Low-conflict
nontarget. Asterisks above bars show one-tailed sig-
nificant discrimination between behavioral categories
above chance without correction (black), and cor-
rected for multiple (6) comparisons (red). C. Classi-
fication accuracies for LO and pFs are presented
separately, averaged across hemispheres. The LOC
template is shown on sagittal and coronal planes,
with a vertical line dividing it into posterior (LO) and
anterior (pFs) regions. Error bars indicate S.E.M. + p
< 0.06, *p < 0.05, **p < 0.01, ***p < 0.001.
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(light red), and reward and different-visual-
category distinctions (dark red), separately for
the MD network and the LOC, averaged across
regions and hemispheres in each system. In the
MD network, neither reward nor visual category
modulated the discrimination of Target vs. High-
conflict nontarget. In contrast, classification ac-
curacies in the LOC are larger when the displayed
objects are from two different visual categories
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compared to when they belong to the same visual
category, irrespective of the reward level. B.
Decoding of visual categories with the same
behavioral status. Classification accuracies above
chance (50%) are presented for no-reward Target

LOC

categories (light blue), no-reward High-conflict nontargets (dark blue), reward Targets (light red), and reward High-conflict nontargets (dark red), separately for the
MD network and for the LOC, averaged across regions and hemispheres in each system. Asterisks above bars show one-tailed significant discrimination above chance
without correction (black), and corrected for multiple (4) comparisons (red). Error bars indicate S.E.M. + p < 0.06, *p < 0.05, **p < 0.01, ***p < 0.001.

(same cue trials), for both the MD and LOC. The data in the figure is the
same as in Fig. 5 for LOC. For MD, we repeated the same analysis as
shown in Fig. 4, except for selecting 180 voxels in each subject-specific
ROL in order to keep the ROI size the same for MD and LOC. For both
MD and LOC regions, there was no interaction with ROI or hemisphere,
therefore accuracy levels were averaged across hemispheres and ROIs
for the MD network and LOC (repeated measures ANOVA with reward
(2), distinction type (2, same or different visual category), ROIs (7 for
MD, 2 for LOC) and hemispheres (2, just for LOC) as within-subject
factors: F < 3.15, p > 0.05 for all interactions with ROI and hemisphere).

We next tested for the effect of reward and distinction type (same or
different visual category) on decoding levels in each the two systems. In
the MD network, a two-way repeated measures ANOVA with reward (2)
and distinction type (2) as factors showed no main effect of reward (Fy,

23 = 0.92, p = 0.35) and no effect of category distinction or their
interaction (F, 23 = 2.9, p = 0.1; F1, 23 = 0.1, p = 0.8, respectively).
These results show that there was no effect of reward on high conflict
items that may be specific for the distinction between visual categories.
In contrast, a similar ANOVA for LOC showed a main effect of distinction
type (F1, 23 = 25.9, p < 0.001) and no effect of reward or their inter-
action (F;, 23 = 0.05, p = 0.8; F;, 23 = 0.46, p = 0.50, respectively).
Together, these results demonstrate that representation was driven by
visual categories in LOC, but not in the MD network. To further establish
this dissociation between the two systems, we used a three-way repeated
measures ANOVA with distinction type (2, same or different visual
category), reward (2), and brain system (2, MD or LOC) as within-
subject factors. There was no main effect of brain system (Fy, 23 = 1.2,
p = 0.3), allowing us to compare between the two systems. An
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interaction between distinction type and system (F;, 23 = 16.7, p <
0.001) confirmed that decoding levels in the two systems were affected
differently by visual category. Critically, reward did not lead to
increased decoding in either of the systems (no main effect of reward or
interactions with reward: F < 0.77, p > 0.39).

3.7. Representation of visual categories

While the main focus of the study was the representation of behav-
ioral status, we further tested whether information about the visual
categories themselves is represented across the MD network and in LOC
and whether this representation is modulated by reward. Fig. 6B shows
accuracy levels of visual categories when both have the same behavioral
status, i.e. both Targets or both High-conflict nontargets, for no-reward
and reward conditions, for both MD and LOC, averaged across ROIs and
hemispheres. In the MD network, repeated measures ANOVA with
reward (2), behavioral status (Targets, High-conflict nontargets) and
ROIs (7) as within-subject factors showed no main effect of reward
(F1,23 = 0.25, p = 0.61) or behavioral status (Fy 23 = 2.38, p = 0.14).
There was a marginally significant interaction of behavioral status and
ROI (Fe138 = 2.17, p = 0.049), and post-hoc tests revealed greater
decoding for Targets compared to High-conflict nontargets in the pre-
SMA only (corrected p = 0.025, corrected for 7 comparisons). Averaged
across ROIs, decoding of visual category in the MD network was not
above chance when the stimuli were either Targets or High-conflict
nontargets, and for either no-reward or reward conditions (tz3 < 1.73,
corrected p > 0.19). These results show that visual categories with the
same behavioral status were not represented across the MD network,
and this representation did not increase with reward.

In LOC, classification accuracies of visual categories averaged across
ROIs and hemispheres was above chance for Targets in the no-reward
condition (one-tailed t-test against chance, corrected for multiple (4)
comparisons: tzs = 3.94, corrected p = 0.001) and marginally above
chance in the reward condition (t;3 = 2.32, corrected p = 0.06). For
High-conflict nontargets, decoding was above chance in the reward
condition (tps = 3.11, corrected p = 0.01) but not in the no-reward
condition (tp3 = 0.83, corrected p = 0.83). Repeated measures ANOVA
with reward (2), behavioral status (Targets, High-conflict nontargets),
ROIs (2) and hemispheres (2) as within-subject factors showed no main
effects or interactions (F < 3.94, p > 0.059), except for an interaction of
behavioral status and reward (F; 23 = 5.4, p = 0.03). However, none of
the post-hoc comparisons were significant (corrected p > 0.08, corrected
for 2 comparisons). Overall, in contrast to the MD network, visual cat-
egories in LOC were decodable, at least in part. A further ANOVA
demonstrated this dissociation between the systems, with larger accu-
racy levels in LOC compared to the MD network (repeated measures
ANOVA with behavioral status (2), reward level (2) and brain system (2,
MD or LOC) as within subject factors: main effect of system: F; 53 =
18.27, p < 0.001; no other significant main effects or interactions: F <
3.49, p > 0.075). Importantly, despite the larger decodability of visual
categories in LOC, there was no effect of reward in any of the systems.

4. Discussion

In this study we used a cued target detection task to test for the effect
of reward motivation on the coding of task-relevant information in the
frontoparietal MD network as reflected in distributed patterns of fMRI
data. Reward motivation, in the form of monetary reward, led to overall
increase in activity across large parts of the MD network. Using MVPA,
we showed that information about the behavioral status during the
stimulus epoch of a trial was represented across the MD network.
However, in contrast to our prediction, reward motivation did not
enhance the distinctions between the three behavioral status conditions
across the MD network. Additionally, we did not find evidence for a
selective facilitative effect of reward on discriminability of highly con-
flicting items (competition-contingent effect). In the LOC, information
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about the behavioral status of the presented stimuli was primarily driven
by visual categories, as expected, and was not modulated by reward
motivation.

Previous reports showed an enhancement effect of reward on overall
activity in the frontoparietal control network (Botvinick and Braver,
2015; Dixon and Christoff, 2012; Padmala and Pessoa, 2011), in line
with our data that showed increase in univariate activity with reward
during both the cue and stimulus epochs. Our results replicated our
previously reported findings that demonstrated the representation of
behavioral status information across the frontoparietal cortex (Erez and
Duncan, 2015), as measured by decoding distinctions between the
behavioral status levels. However, despite increases in overall univariate
activity with reward across the MD network, our results did not show an
increase in representation in reward trials, and we did not observe a
selective increase in representation for the highly conflicting items,
namely Targets vs. High-conflict nontargets. Recently, Hall-McMaster
et al. (2019) showed some increases in task-relevant stimulus features
information when reward levels were high, using distributed patterns in
EEG data. In the task used in the current study, we tested for represen-
tation of behavioral status of the presented items, rather than stimulus
features. We did not observe changes in representation similar to the
ones observed by Hall-McMaster et al. There may be several possible
reasons for that, including the type of representations that were tested
(features vs. behavioral status), multiple differences in the design that
contribute to our ability to detect multivariate representations, low
spatial specificity in the EEG data compared to the more focused ROIs in
our fMRI study, and perhaps the most significant being the limited time
window where such differences were observed in EEG that cannot be
detected with the low temporal resolution fMRI data.

More generally, several reasons can provide potential explanations
for the results obtained in our study, showing no facilitative effect of
reward on pattern discriminability of behavioral status. Indeed, it is
possible that in contrast to reward effects on overall activity, its effect on
neural representations is limited to cue decoding when the task context
is set, as has been previously demonstrated (Etzel et al., 2016), and does
not extend to the stimulus phase when information is processed based on
the cue. Another possibility may be related to the reward being offered
on a trial-by-trial basis, which may not be sufficiently strong to generate
detectable reward-related effects on decoding. It has been recently
demonstrated that stable longer-term cue-reward associations that are
learned prior to scanning lead to increased decoding of task-related in-
formation in visual and parietal areas (Tankelevitch et al., 2020). Other
possible explanations may include a reward manipulation that was not
sufficiently strong to make a difference to pattern discriminability, and
multiple factors in the experimental design that make small effects hard
to detect with current MVPA methods, particularly across the fronto-
parietal cortex where low decoding accuracies are widely common for
reasons that are not yet well understood (Bhandari et al., 2018). We
note, however, that the results were consistent across several control
analyses, including ROI size, multivariate discriminability measure, and
whole-brain searchlight analysis. Beyond the above potential explana-
tions, insufficient power is always a concern when reporting null results.
A post-hoc sensitivity power analysis showed that the study had suffi-
cient power to detect a moderate effect size with respect to reward
modulation of decoding behavioral distinctions, but not a smaller one.
For fMRI MVPA results in general, and more so given the sparse evidence
in the literature relevant for our main research question, it is hard to
establish an expected effect size. Therefore, a reasonable interpretation
of our results would be that reward does not lead to moderate or large
increase in decoding but could possibly lead to increased decoding if this
is relatively small. We note that the study had sufficient power to detect
univariate effects as well as other complementary pattern discrimina-
tions. First, our overall decoding levels for behavioral status were above
chance, with decoding for the no-reward conditions similar to previ-
ously reported results (Erez and Duncan, 2015). Second, decoding in
LOC showed a clear pattern of contingency on visual category
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representation, as expected in the visual cortex, in contrast to distinct
pattern of decoding across the MD network that did not depend on the
visual category of the presented items. Such decoding patterns in LOC
are consistent with previous studies that showed only weak, or
non-existing, task effects (Bugatus et al., 2017; Harel et al., 2014; Hebart
et al., 2018). Lastly, in a control analysis we observed high decoding
accuracies for motor responses (right vs. left button presses) in the motor
cortex, as expected for these regions. This provides an indication for the
quality of the data and the analysis procedure and demonstrates suffi-
cient power to detect these responses.

Our predictions were based on the sharpening and prioritization
account, which postulates that reward motivation leads to a sharpened
neural representation of relevant information depending on the current
task and needs. Previous neurophysiological evidence provide support
for this aspect: reward has been associated with firing of dopaminergic
neurons (Bayer and Glimcher, 2005; Schultz et al., 1997), and dopamine
has been shown to modulate tuning of prefrontal neurons and to sharpen
their representations (Ott and Nieder, 2016; Thurley et al., 2008;
Vijayraghavan et al., 2007). The prioritization aspect can be related to
the expected value of control (EVC) theory (Shenhav et al., 2013) and
reward-based models for the interaction of reward and cognitive con-
trol, essentially a cost-benefit trade-off (Botvinick and Braver, 2015).
Cognitive control is effortful and hence an ideal system would allocate it
efficiently, with a general aim of maximizing expected utility. Despite
the appeal of this account, our results did not show experimental support
for this view. At the behavioral level though, we observed some evi-
dence for such a benefit of reward. Accuracy levels of performance in the
task for Target trials were higher in the reward compared to the
no-reward condition. Additionally, while in the no-reward condition
Target trials were less accurate than Low-conflict nontargets, as is well
established in the visual search literature (Schneider and Fisk, 1983;
Shiffrin and Schneider, 1977), there were no differences between them
in the reward condition. We did not observe a similar benefit in reaction
times, most likely due to the time threshold that we used for reward
trials, which reduced the reaction time on all the reward trials and may
have masked an interaction with reward.

The nature of the conflict addressed in our study concerns the effect
of current task goals (i.e., cue) on the behavioral relevance and pro-
cessing of the presented stimuli. This is a fundamental aspect of cogni-
tive control which have been addressed by us and others in the field in
different ways, both in human and non-human primate studies (Erez and
Duncan, 2015; Freedman et al., 2001; Hall-McMaster et al., 2019;
Kadohisa et al., 2015). There are several other important aspects of the
potential effect of reward motivation on goal-directed information
processing that cannot be addressed in our data and may be addressed in
future studies. For example, one aspect is related to how reward moti-
vation may bias response towards reward-associated stimuli when
stimuli are presented simultaneously and compete for attention. Another
aspect is how reward motivation may affect encoding of visual features
of the stimulus, e.g., as can be tracked using inverted encoding models
(Myers et al., 2015; Sprague et al., 2016). These aspects are comple-
mentary and provide different perspectives to better understand control
processes.

The visual categorization aspect of our task allowed us to investigate
effects of reward on representation in LOC compared to the MD network,
and in particular whether there is a specific effect of reward that is
driven by visual differences. In the MD network, decoding levels were
similar between conditions with the same visual category and different
visual category, and there was no modulation by reward in any of them.
In contrast, the discrimination in LOC was driven by the visual cate-
gories, as expected in the visual cortex, with Targets and High-conflict
nontargets being discriminable only when items belonged to two
different visual categories. In a complementary analysis, we tested for
representation of the visual categories themselves, while keeping the
behavioral status fixed, i.e., when both stimuli are Targets or both are
High-conflict nontargets. As expected, decoding levels of visual
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categories were larger in LOC compared to MD. Additionally, visual
categories with the same behavioral status were not represented in the
MD network, in line with previously reported findings (Erez and Dun-
can, 2015). Importantly, reward did not lead to increased decodability
of the visual categories in either the MD network or in the LOC. While it
is widely agreed that the frontoparietal cortex exerts top-down effects on
visual areas, there is no clear prediction as to whether any effects of
reward should be observed in the visual cortex. Our results provide
evidence that the effects of reward were not present in LOC. Previous
studies have shown differences in representations between pFs and LO
(Harel et al., 2014; Jiang et al., 2007; Li et al., 2007), however, our
results were similar for both regions.

Although our primary question addressed the representation of task-
related information during the integration of stimulus and cue, we also
tested for an effect of reward in the cue epoch. The use of catch trials
ensured that the cue and stimulus GLM regressors were appropriately
decorrelated. The overall univariate activity across the MD network
increased with reward during the cue epoch, possibly reflecting an in-
crease in cognitive effort due to the reward. However, we did not
observe cue decoding above chance, in contrast to previously reported
results (Etzel et al., 2016). One reason for this difference may be related
to the design of the current task. We used words of the category names as
cues, which appeared together at the same time with the
no-reward/reward indication — the reward trial cues had additional red
pound signs. The choice of words as cues allowed for high task perfor-
mance (compared to using abstract symbols, which is more difficult), as
confirmed in pilot experiments. This may have come at the expense of
cue decodability, which was not the focus of the study. The visually
salient reward signal presented simultaneously with the cues may have
also contributed to reduced cue decoding levels, and the longer delay
period in their study probably led to longer active maintenance of the
task rule in working memory. Other reasons for the different results
compared to Etzel et al. may be related to the size of the effect and our
ability to detect it. The effect of reward on cue decoding reported by
Etzel et al. was observed across all ROIs, but was inconsistent in indi-
vidual ROIs, with only one region showing a significant difference be-
tween reward and no-reward conditions. Even for decoding across all
ROIs, statistical significance was reached in one statistical test but was
only marginal in another. It could be that the effect of reward on cue
decoding is relatively small and therefore hard to detect. Among others,
our ability to detect such effect may be affected by the areas chosen,
number of trials and runs completed per subject etc. The contributions of
many of these factors to decoding levels in the frontoparietal network
more generally are not yet well understood (Bhandari et al., 2018). The
similarities and differences in task design and results that we report here
together with those reported previously (Etzel et al., 2016) may be used
to better understand the factors that affect decoding levels of contextual
cues across the frontoparietal network and inform future studies.
Enhancement of cue decoding following reward was also recently re-
ported using EEG (Hall-McMaster et al., 2019). This facilitative effect
was observed for ‘switch’ trials but not ‘stay’ trials. Our study design was
not controlled for ‘switch’ and ‘stay’ trials, and it could be that cue
decoding would emerge if these could be considered. An additional
prominent difference between the EEG results and ours is the spatial
specificity, with much more widespread activity contributing to
decoding in EEG data.

There is a growing interest of the scientific community in the inter-
action between reward motivation and control processes, its neural
correlates, and its implementation in computational models of rein-
forcement learning. Here, we report increases in overall univariate ac-
tivity with reward but primarily null results for an effect of reward on
task-related representations across the frontoparietal network and we
believe that these results may be useful for future studies that seek to
address similar questions. Our findings point out that the extent of ef-
fects of reward on neural representation may be limited and dependent
on specific task demands and trial epochs. Limited effects were also
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reported by Hall-McMaster et al. (2019), where increased cue decoding
was observed only when the cue changed from one trial to another, but
not in trials where the cue remained the same. Reports on the effect of
reward on task representation are so far limited, and with the movement
towards open and replicable science, it is important to establish the best
possible pool of evidence for such effects. Our results will ultimately
contribute to the overall estimates of the extent of effects of reward on
neural representation. Additionally, they may be used as a starting point
for future studies and particularly for power estimates, with respect to
both the expected effect size as well as aspects of the experimental
design that may contribute to the detectability of reward effects.
Different measures can be taken to further increase power within
scanning time limits. These might include, but not limited to, collecting
a larger amount of data per participant, possibly over more than one
scanning session, as well as using other methods that have been used
recently to address neural representation for fMRI data such as repeti-
tion suppression (Garvert et al., 2015).

5. Conclusions

With growing interest in the interaction between control processes
and reward motivation, our study provides important experimental ev-
idence for the limited extent of effects of reward on task-relevant neural
representations. Future studies will be required to further investigate the
factors that determine how and when reward shapes neural represen-
tations and the mechanisms that underlie the profound effects of reward
on behavior.
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